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Abstract

A major portion of the delay in the Air Traf-
fic Management Systems (ATMS) in US and Eu-
rope arises from the convective weather. In the
current practice of managing air traffic, the pre-
dicted storm zones are considered as deterministic
obstacles and hence they are completely avoided.
As a result, the current strategy is too conservative
and incurs a high delay. In reality, the dynamics
of the convective weather is stochastic in nature.
Hence, the capacity of the airspace is probabilis-
tic, which reduces drastically with the convective
weather. Our research objective is to deal with the
dynamic and stochastic nature of the storms and
add recourse in the routing and the flow manage-
ment problem. We address the multi-aircraft flow
management problem using a stochastic dynamic
programming algorithm, where the evolution of the
weather is modelled as a stationary Markov chain.
Our solution provides a dynamic routing strategy
for “N-aircraft” that minimizes the expected delay
of the overall system while taking into consider-
ation of the constraints obtained by the sector ca-
pacities, as well as avoidance of conflicts among the
aircraft. Our simulation suggests that a significant
improvement in delay can be obtained by using our
methods over the existing methods.
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1 Introduction

The air traffic management systems in US and
Europe are approaching a critical saturation level.
There has been a steady increase in delays over the
last decade. Regular disruptions such as weather
cause an explosion of flight delays and cancella-
tions. In figure 1, we see that the number of de-
layed flights due to convective weather has been
increasing since the year 1995 [5]. There is a signif-
icant number of delayed flights all year long, with
particularly high number of delays in the summer
months. The airspace capacity reduces drastically
with the presence of convective weather. The dras-
tic reduction of airspace capacity interrupts traf-
fic flows and causes delays that ripple through the
system. Consequently, weather related delays con-
tribute to around 80% of the total year in most of
the years in US since 1995. Though the years 2001
and 2002 have been better (in terms of delays ) than
the year 2000 due to weaker economy, the situation
is expected to get worse in the coming years. More-
over, these delays do not depict the entire picture of
the situation, as cancelled flights are not included
in the figures. According to FAA, the cancellations
have increased by 67% since 1995. The cost of de-
lays to airlines and passengers are billions of US
dollars per year.

According to FAA 2002, the main sources that
contribute to the delays in the US are weather,
equipment, volume, and runways. Delays caused
by weather are dynamic and stochastic in nature.
Other sources cause delays which can be modelled
in a deterministic framework. There has been a
major effort to address delay in the traffic flow
management problem in the deterministic setting
[1, 4, 8, 3, 6, 7, 9], where demand and capacities are
considered deterministic. In these works, various
traffic flow management algorithms are proposed
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Figure 1: Number of total delayed flights vs de-
layed flights due to weather(in thousands) by year.
Source: FAA OPSNET data.

in order to reduce the system delay, given that
the system capacity is exactly known. However,
the major contributor of delay is weather, which
is probabilistic in nature and cannot be addressed
in this framework. In the National Airspace Sys-
tem, Federal Aviation Administration controllers
and airline dispatchers make Traffic flow manage-
ment (TFM) and routing decisions 3-4 hours in ad-
vance of the actual operation. Knowledge of the
location and the intensity of the hazardous con-
vective weather 3-4 hours ahead is key to select air
routes. The rerouting and the redistribution strate-
gies of the traffic affected by convective weather is
discussed in recent works [5, 13]. The main focuss
of these works has been to manage the traffic flow,
given that the convective weather has already been
taken place in the airspace. In addition to these
models, it is imperative to have a strategy where
recourse is included in the planning process, such
that we can plan to replan under the weather un-
certainty. In our previous work [11], we incorpo-
rated recourse in the planning process where we
addressed the single aircraft problem using Markov
decision processes (where the weather processes is
modelled as a stationary Markov chain) and a dy-
namic programming algorithm. Our approach pro-
vides a set of optimal decisions to a single aircraft
that starts moving towards the destination along a
certain path, with the recourse option of choosing
a new path whenever new information is obtained,
such that the expected delay is minimized. As we
addressed the problem in the stochastic framework,
we obtain “the best policy”. In addition, we pro-
posed an algorithm for dynamic routing where the
solution is robust with respect to the estimation er-

rors of the storm probabilities [10]. To the Bellman
equations, which are derived in solving the dynamic
routing strategy of an aircraft, we add a further re-
quirements: we assume that the transition proba-
bilities are unknown, but bounded within a convex
set. Our algorithm optimizes the performance of
the system, given there are errors in the estimation
of the probabilities of the storms.

However, as the algorithms provide a routing
strategy for a single aircraft, they cannot solve a
real life flow management problem entirely which
requires handling of multiple aircraft. Moreover,
the model that we used to describe the dynamics
of the weather was expressed in a binary manner,
where for each predicted zone, we allowed the con-
vective weather to either stay or not stay. This is
rather simplistic and cannot capture the real life
dynamic nature of the weather.

In this paper, we extend our model for multi-
ple aircraft. The problem of routing under convec-
tive weather becomes much more complex in a con-
gested airspace because both aircraft conflicts and
traffic flow management issues must be resolved at
the same time. In this work, we provide a dy-
namic routing strategy for multiple aircraft that
minimizes the expected delay of the overall system
while satisfying the consideration of the constraints
obtained by the sector capacity, as well as avoid-
ance of conflicts among the aircraft. Moreover, we
have used a more general weather dynamic model
where the predicted zones can have more than two
different states.

2 Weather uncertainty model

Various weather teams (CCFP, ITWS etc)
produce predictions that some zones in the airspace
may be unusable in certain time interval and their
predictions are dynamically updated at every T =
15 minutes. The later an event is from the pre-
diction time, the more unreliable it becomes. It is
reasonable to assume that we have a deterministic
knowledge of the weather in the time interval of
0−15 minutes in future. Hence, each aircraft has a
perfect knowledge about the weather in the regions
that are 15 minutes (15 times the velocity of the
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aircraft provides the distance) away from it.

We discritize time as 1, 2, ..., n stages accord-
ing to the weather update. Stage 1 corresponds
to 0 − 15 minutes from the current time, stage 2
corresponds to 15 − 30 minutes from the current
time. We choose n that accommodates the worst
case routing of the aircraft. Let there is only one
storm that is predicted to take place at the region
K1. In our previous work [11], we defined state
“1” corresponding to the state of having a storm
in a region at a particular stage and state “0” cor-
responding to the state of having no storm at a
particular stage in that region. As we know the
status of any storm in the time interval of 0 − 15
minutes (stage 1), we can assign 0(1) determinis-
tically to every storm at the stage 1. Moreover,
we assumed that we knew the conditional proba-
bility of having (not having) a storm in a region
in a 15 minutes time interval (stage q), given there
is a storm(no storm) in the previous stage (stage
q − 1) in the region, and the dynamics is consid-
ered Markovian. The conditional probability only
depends on the status of the storm in the stage p
only.

However, this model cannot capture the real-
istic weather dynamics accurately. In figure 2, we
see that the predicted convective weather vs actual
weather in a typical summer day. There are differ-
ent colors associated with different predicted zones
which correspond to different density, i.e., the per-
centage of the area of the predicted zones that will
be affected by the storm. The actual outcomes of
the predictions are more complex than that to be
described by binary states. Instead of fully realiz-
ing in the worst form or not realizing at all, it can
realize in many intermediate forms.

Figure 2: A CCFP weather prediction vs actual
weather in a summer day (19th May, 2001).

In this paper, we propose that each predicted
convective weather zone can have multiple out-
comes. Depending on the coverage area and the
intensity of the prediction, we allow to have differ-
ent realizations. Hence, the Markov chain that we
propose is not a two state one, instead it is a l state
Markov chain, where l is the number of possible
outcomes of the prediction in the region K1 (figure
3). K11,K12, . . . ,K1l, are the possible outcome re-
gions in K1 (K1i ⊂ K1∀i < l and Kil = K1). “0”
corresponds to the state where there is no storm in
the region k1, “1” corresponds to the state where
there is a storm, but only materialized in the re-
gion K11, and so on. State “l” corresponds to the
worst possible outcome when Kil or the whole re-
gion K1 has been affected by the storm. We define
pij as the probability of the storm state to be j
in the next stage if the current state is i. If there
are m predicted convective zones, the system can
be represented by a state of m tuple vector, with a
cardinality of (l + 1)m.
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Figure 3: A 2-D view of the problem.

3 Problem Formulation

We consider a two dimensional flight plan
of multiple aircraft whose nominal paths are ob-
structed by predicted convective weathers. All the
aircraft considered here are in the TMA/En-route
portion of their flights. Hence, the velocities of all
the aircraft considered are constant.

We use a rectangular gridding system to rep-
resent the airspace where we consider each grid
point as a way point. If any aircraft is at a point
‘A’ at the beginning of the stage, and the solu-
tion of the problem provides the grid point ‘B’ that
the aircraft will reach at the end of the stage, the
aircraft will fly a straight line path connecting ‘A’
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and ’B’. There are N aircraft currently positioned
at O1, O2, . . . , ON and the destination points of
the aircraft are D1, D2, . . . , D

N (Figure 4). Oi =
[Oi(x), Oi(y)]T ∈ R2 , where Oi(x) and Oi(y) are
respectively the x and y coordinates of the origin
of aircraft i. Similarly, Di = [Di(x), Di(y)]T ∈ R2,
where Di(x) and Di(y) are respectively the x and
y coordinates of the destination of aircraft i. With-
out the presence of convective weather, aircraft will
try to follow the straight line connecting the ori-
gin and the destination, if those paths don’t re-
sult in conflicts. There is a prediction that there
can be m storms located at K1, . . . ,Km places
such that those zones might be unusable at cer-
tain time. w ∈ W are the weather states and
|W | = (l + 1)m. The airspace that is considered
here is confined in f sectors, and the capacities of
the sectors are C1, . . . , Cf . The predictions are dy-
namically updated with time. In the current prac-
tice, these stochastic convective zones are assumed
to be completely unusable, and solution proceeds
as if they are deterministic constraints. As those
zones were just predicted to be of unusable with
a certain probability, it often turns out that the
zones were perfectly usable. As the routing strate-
gies do not use these resources, airspace resources
are under-utilized, leading to congestion in the re-
maining airspace through ripple effect.
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Figure 4: A 2-D view of the problem.

In our proposed model, we will not exclude
the zones which are predicted to be unusable (with
some probability) at a certain time and we will take
into consideration the fact that there will more up-
dates with the course of flight and recourse will
be applied accordingly. We take a less conserva-
tive route in avoiding the bad weather zone where
we take a risk in delay to attain a better expected

delay instead of avoiding the bad weather zones
deterministically. We consider the following two
schemes,

1. All of the N aircraft has the equal priority.

2. Every aircraft has different priority. Without
the loss of generality, we assume that (pri-
ority of aircraft 1)>(priority of aircraft 2)>
. . . >(priority of aircraft N).

Scheme 1: All of the N aircraft has the equal
priority.

At each stage (15 minutes time span, before
the next update), the storm state is assumed to stay
constant. X1 ∈ R2, X2 ∈ R2, . . . , XN ∈ R2 repre-
sent the locations of aircraft. If the state of the con-
vective weather is w (as section 2), we define a state
of the system as s = (w,X1, . . . , XN ) ∈ R2N+1,
which represents the positions of all the aircraft
and the storm situation . Furthermore, we define
S as the set of all possible states s. At any stage
t, we want to choose an action (the directions of
all the N aircraft to follow) from the set of allow-
able actions in state s, As. Let, A = ∪s∈SAs. We
assume that S and A do not vary with time.

If we decide to choose an action (the directions
of all the N aircraft to follow) a ∈ As in state s at
the stage t, we pay a cost ct(s, a), which is the sum
of distances travelled by N aircraft with the action
a. For notational simplicity, we assume that the ve-
locities of all the aircraft are equal (vAC). Hence,
if we minimize the expected distance travelled, we
are minimize the expected delay. (Exactly the same
optimization formulation holds even if the veloci-
ties of the aircraft are different from each other:
where we need to multiply the cost functions with
appropriate multiplying factors). Furthermore, we
define an indicator function Ikj(Xk), whose value
is 1 if Xk is in the sector j, and 0 otherwise. In
our optimization problem, we will like to minimize
the expected sum of the distances travelled by N
aircraft, while resolving all the potential conflicts
and satisfying the sector capacity constraints. The
optimization problem can be written as,
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min
a∈A

Es

(

nT
∑

t=T

ct(s, a)

)

s.t.‖X i(t, w)−Xj 6=i(t, w)‖2 > r, ∀i, j ∀ t∀ w,
∑

k

Ikj ≤ Cj ∀ 0 ≤ j ≤ f,

where r is the minimum permissible separation dis-
tance between two aircraft, and ‖.‖2 is the euclidian
norm 1.

Scheme 2: (priority of aircraft 1)>(priority
of aircraft 2)> . . . >(priority of aircraft N)

This is a sequential optimization problem and
the steps are as follows,
Step 1: In this step, we assume that there is only
one aircraft in the airspace and that is aircraft 1,
which has the highest priority. The state of the op-
timization problem is defined as s1 = (w,X

1) ∈ S1,
where w is the storm state and X1 is the position
of the aircraft 1. If we decide to choose an action
a1 ∈ As1 in state s1 at the stage t, we pay a cost
c1t (s1, a1), which is the distance travelled by aircraft
1 with the action a1. We optimize the following
problem,

min
a1∈As1

Es1

(

nT
∑

t=T

c1t (s1, a1)

)

If we solve this optimization problem, we obtain
the optimal policy ao

1 which provides us X
1
opt(t, w),

the optimal position of aircraft 1 at time t and the
storm state w.
Step 2: In this step, we only consider aircraft 2,
which has the second highest priority. The state of
the optimization problem s2 = (w,X

2) ∈ S2. At
any stage t, we want to choose an action (the direc-
tion aircraft 2 to follow) from the set of allowable
actions in state s2, As2. Let, A2 = ∪s2∈S2

As2. For
the aircraft 2, we solve the following optimization
problem,

min
a2∈As2

Es2

(

nT
∑

t=T

c2t (s2, a2)

)

‖X2(t, w)−X1opt(t, w)‖2 > r, ∀ 0 ≤ t ≤ nT ∀ w,

1If M = (M1, M2, . . . , Mp) ∈ R
p, then ‖M‖2 =

√

M2

1
+ . . . + M2

p .

and obtain X2opt(t, w).
Step 3- Step N : We keep following the same pro-
cedure till we have solved for all N aircraft. For
the Nth aircraft,which has the lowest priority, the
optimization problem is the following,

min
aN∈AsN

EsN

(

nT
∑

t=T

cNt (sN , aN )

)

s.t.‖XN (t, w)−X1opt(t, w)‖2 > r, ∀ t ∀ w,

‖XN (t, w)−X2opt(t, w)‖2 > r, ∀ t ∀ w,

. . .

‖XN (t, w)−X
(N−1)
opt (t, w)‖2 > r, ∀ t ∀ w,

∑

k

Ikj ≤ Cj ∀ 0 ≤ j ≤ f,

where X1opt, . . . , X
(N−1)
opt are obtained from previous

iterations.

In both of the schemes, we look for the “best
policy”. Determining the “best policy” is to decide
where to go next given the currently available in-
formation. We consider the set of decisions facing
all of the aircraft that start moving towards the
destination along a certain path, with the recourse
option of choosing a new path whenever a new in-
formation is obtained.

4 Markov Decision Process

Finite-state and finite-action Markov Decision
Processes (MDPs) capture several attractive fea-
tures that are important in decision-making un-
der uncertainty: they handle risk in sequential
decision-making via a state transition probability
matrix, while taking into account the possibility of
information gathering and recourse corresponding
to this information during the multi-stage decision
process [12, 2]. The Markov decision process has
the finite state X , and the finite action set A. We
denote by P = (P a)a∈A the collection of transition
matrices, and by ct(i, a) the cost corresponding to
state i and action a at time t, and denote by cT the
cost function at the terminal time, T .

The optimization problem is to minimize the
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expected cost over a finite horizon:

min
a∈A

E

(

T−1
∑

t=0

ct(it, at) + cT (iT )

)

where a = (a0, . . . , aT−1) denotes the strategy and
A the strategy space. When the transition matrices
are known, the value function can be computed via
the Bellman recursion

Vt(i) = min
a∈A



ct(i, a) +
∑

j

P a(i, j)Vt+1(j)



 .

5 Solution of Traffic Flow Man-
agement where all of the N

aircraft has the equal priority
(scheme 1)

We propose a Markov Decision Process algo-
rithm to solve the traffic flow management where
each of the N aircraft has same priority. The steps
of the algorithm are as follows,

Step 1: Preliminary calculations

The state of the Markov Decision Process
(MDP) for this problem is s = (w,X1, X2, . . . , XN )
((2N + 1) tuple vector) and s ∈ S (defined in the
section 3). If we discritize the airspace by D num-
ber of nodes, |S| = D2N (l+1)m. There are n stages
in this MDP (obtained in section 2). In addition,
we need to calculate the action set of the MDP. Ac-
tions of this MDP are the directions of all the N
aircraft to follow in each stage with different real-
izations of the weather. We can obtain the action
a, that is the directions of the aircraft to follow if
we calculate the points that can be reached by each
aircraft in the next 15 minutes, given their current
positions. This can be approximately calculated if
we draw an annular region with 15 × vAC ± ε as
radii, with a predefined angle θ and checking which
grid points fall in the region. Once we have the set
of all possible controls, we readily obtain P a from
the weather data.

Step 2: Assigning appropriate costs

We assign costs in such a way that our algo-
rithm provides paths that include going through

the zones in the absence of storms while avoid it if
there is a storm. Furthermore, it should also make
sure that there is no conflict among N aircraft. We
define c(w,X1, . . . , XN , (X1i), . . . , (XNi)) as the
sum of all 1 ≤ k ≤ N costs obtained by aircraft
k to go to XKi from Xk.
Provision 1: Avoid if storm, otherwise take
a shortcut
We introduce a function PROV1 : R

4N+1 → {0, 1}
in order to provide us the provision of avoiding a
zone if there is a storm, otherwise taking a short-
cut.
If ∀1 ≤ k ≤ N , (Xki ∈ {k1ork2or..km}) or ({the
line segment (λXki + (1 − λ)Xk and 0 ≤ λ ≤ 1 )
connecting the points Xk, Xki cut any of the pre-
dicted storm zone } & { the storm state w corre-
sponds to a storm at that particular zone})
PROV1(w,X

1, . . . , XN , X1i, . . . , XNi) = 1,
else
PROV1(w,X

1, . . . , XN , X1i, . . . , XNi) = 0
endif.
Provision 2: Avoid conflict among each
other
First, we introduce a function CFv1v2

: R2 ×R2 ×
R2 × R2 → {0, 1}, where it takes the origin and
destination points of two aircraft with velocities
v1 and v2 and provides “1

′′ if they are in conflict
and “0′′ otherwise. We will demonstrate how to
obtain CFv1v2

(I1, F1, I2, F2), where Ij is the ini-
tial point and Fj is the final point of the air-
craft j. At time t, the positions of aircraft 1
and 2 are I1 +

F1−I1
‖F1−I1‖2

v1t and I2 +
F2−I2

‖F2−I2‖2
v2t re-

spectively. The distance between them at time t,
d(t) = ‖∆I− (∆W )t‖2, where U1 =

F1−I1
‖F1−I1‖2

, U1 =
F2−I2

‖F2−I2‖2
, ∆I = I2 − I1, and ∆W = (v1U1 − v2U2).

argmint d(t) = argmint(∆I− t∆W )
T (∆I− t∆W ).

In order to find the optimal time t∗ at which two
aircraft come to the closest point, we set ∂

∂t(∆I −
∆Wt)T (∆I − ∆Wt) = 0. Solving this, we obtain

t∗ = ∆W T∆I
∆W T∆W

. If t∗ < 0, the two aircraft are di-
verging, hence CFv1v2

(I1, F1, I2, F2) = 0. Also, if
‖∆I + t∗∆W‖2 > r, CFv1v2

(I1, F1, I2, F2) = 0, else
CFv1v2

(I1, F1, I2, F2) = 1.

In this problem, as we have assumed that all
the aircraft are flying at the same speed, we can
write CF (, ., ., ., .) instead of CFv1v2

(, ., ., ., .). In
addition, we introduce a function PROV2 : R

4N →
{0, 1} that provides us the provision of conflict
avoidance.
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If ∀l, k, ‖X li−Xki‖2 > r & CF (X l, X li, Xk, Xki) =
0, PROV2(X

1, . . . , XN , X1i, . . . , XNi) = 0,
else
PROV2(X

1, . . . , XN , X1i, . . . , XNi) = 1
endif.
Finally, the cost function is defined as following,
if PROV1(w,X

1, . . . , XN , X1i, . . . , XNi) = 1 &
PROV2(X

1, . . . , XN , X1i, . . . , XNi) = 1,
c(w,X1, . . . , XN , X1i, . . . , XNi) =∞,
else
c(w,X1, . . . , XN , X1i, . . . , XNi) =

∑N
k=1 ‖X

ki −
Xk‖2
endif.

Step 3: Assigning appropriate Value func-
tion

We define Vt(s) as the value function which is
the expected minimum distance to go if the current
state is s and the current stage is t. We need to
add the following provisions in the value function
in order to obtain the correct solution.

Provision 1: Reach the destination points

The value function should have boundary condi-
tions such that we obtain a complete path (path
stating at the origin and ending at the destina-
tion) as a solution. For the destination points
D1, . . . , DN , the conditions below would guaran-
tee that the solution will provide a complete path.
For any state weather state w and the last stage n,
if {X1 = D1}, . . . , {X1 = D1}
Vn(w,X

1, . . . , XN ) = 0,
else
Vn(w,X

1, . . . , XN ) =∞
endif.
Provision 2: Direct cost at the end of the
flight
We assign the boundary values to the value func-
tion for the states which corresponds to the aircraft
locations that are less than 15vAC apart from the
destination points. Let the state corresponds to the
aircraft location of X1, . . . , XN and (‖(X i−Di‖2 ≤
15vAC ∀i) and the stage t > 1.
If (w corresponds to the storm state such that no
storm zone intersects the straight line {λXk+(1−
λ)Dk and 0 ≤ λ ≤ 1} )
Vt(w,X

1, . . . , XN ) =
∑

k ‖X
k − Dk‖2, for any

t > 1,
else

Vt(w,X
1, . . . , XN ) =∞

endif.
Provision 3: Sector Capacity
In order to ensure that the total number of air-
craft in a sector at any time does not exceed the
sector capacity, we assign value function appropri-
ately. For a state s = (w,X1, . . . , XN ), if there
exists at least one j such that

∑

k Ikj > Cj, then
Vt =∞.

Step 4: Implementing the recursive equa-
tions

The recursive equation that solves the problem
is as follows,

Vt(s) = min
a∈A

{c(s, a) +
∑

s′

P a(s, s′)Vt+1(s
′)}.

We use the backward dynamic programming
technique to solve these equations. We start with
the final stage and go back iteratively to the first
stage and obtain solutions for every stage and for
every state. At the first stage, the solution is read-
ily obtained as we know the current state. The
aircraft will keep continue flying according to the
solution till a new update is obtained. At the next
stage, we will receive a new update, which corre-
sponds to a new state. As we have already calcu-
lated all the optimal control for all possible states,
we just check the vector V2(.) and obtain the con-
trol. The aircraft will proceed in this way till they
reach the destination points (checking the vector
Vn(.)). In this way, we compute a routing strategy
that provides the minimum expected delay.

6 Solution of Traffic Flow Man-
agement with different priority
(scheme 2)

In this scheme, we assume that (priority of
aircraft 1)>(priority of aircraft 2)> . . . >(priority
of aircraft N) (as described in the section 3).

Step 1: Optimal route for aircraft 1

In this step, we find the optimal route for air-
craft 1, which has the highest priority. In a sense,
we assume that there is no aircraft in the airspace.
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The MDP state s1 = (w,X
1) ∈ R3 and s1 ∈ S1

(defined in the section 3). We discritize the airspace
and time in a same way as described in section 5
and section 2, which yields |S1| = D2(l + 1)m, and
n stages in this MDP. Actions of this MDP are the
directions of aircraft 1 to follow in each stage with
different realizations of the weather. As described
in section 5, we obtain the action a1, that is the
directions of aircraft 1 to follow if we calculate the
points that can be reached by aircraft 1 in the next
15 minutes, given its current position. We define
c1(w,X

1, X1i) as the cost to go if the aircraft 1
goes from X1 to X1i in a stage. For assigning the
appropriate value, we only need to add provision 1
(calculation of which is same as described in sec-
tion 5: step 2: provision 1). As there is only one
aircraft, there is no need to add the provision for
conflict avoidance. The value function for the MDP
is defined as V 1t (s1), which is the expected mini-
mum distance to go if the current state is s1 and
the current stage is t. In the value function, we add
the the first two provisions (the calculation is same
as described in section 5: step 4: provision 1and 2
). As there is no other aircraft in the airspace, we
do not need to add any provision that require satis-
fying the sector capacities. Once we have assigned
all the boundary values properly, we can solve the
following recursion,

V 1t (s1) = min
a1∈A1

{c1(s1, a1)+
∑

s′
1

P a(s1, s
′
1)V

1
t+1(s

′
1)},

and we obtain the solution of the recursion which
provides us X1opt(t, w).

Step 2−N : Optimal route for aircraft 2−N

We follow the same procedure in the next
steps, except we add the provisions that pro-
hibit conflicts and satisfy the sector capacity con-
straints. In the the second step, we add the con-
flict avoidance provision in the cost function, where
X1opt(t, w) ∀ t ∀w are considered “NO-GO” zones.
We use the same procedure described in section 5:
step 3: provision 2, where we assign high cost for
violating these constraints. In each iteration, we
keep a record of Ikj and assign a very a high value to
the value function if the sector capacity constraints
are violated. When we solve the appropriate recur-
sion, these additional features will guarantee the
conflict avoidance and satisfy the sector capacity

constraints. For the Nth aircraft, which has the
lowest priority, the provision 2 for cost function will
be as follows, if ∀1 ≤ k ≤ N −1, ‖XNi−Xki‖2 > r

& CF (XN , XNi, Xk
opt, X

ki
opt) = 0,

PROV N
2 (X

N , XNi) = 0,
else
PROV N

2 (X
N , XNi) = 1

endif.
The cost function will be defined in the same way
(section 5) using these two provisions. Also, V N

t (.)
is very high for the states which violates the sector
capacity constraints. With this provisions in the
cost and value functions, we can solve the recur-
sion and obtain optimal strategy for all of the N
aircraft that minimize the delay, given the above
priority scheme. This scheme avoids combinatorial
explosion as |S1 = |S2| = . . . = |SN | = D2(l + 1)m.
On the other hand, as this is a more constrained
optimization problem, it yields higher delays than
the scheme 1.

7 Various applications in the Eu-
ropean airspace

In the European airspace, weather is not as
acute of a problem as in US. However, the algo-
rithms presented here can be applied to some im-
portant problems that arise in Europe as well.
Routing under congested airspace: Stochas-
tic obstacles that occur frequently in Europe is the
congested airspace. The dynamics of the congested
airspace is stochastic in nature. The remaining ca-
pacity of the airspace to be used by the aircraft
outside the congested airspace can be expressed in
a Markovian model. Our proposed MDP algorithm
can be readily applied to the problem involving the
capacity uncertainty due to congestion.
Routing of platoon of aircraft under uncer-
tainty: In Europe, multiple aircraft fly in a pla-
toon to go to a same destination point, where pri-
orities are given according to the position in the
platoon; i.e., the leading aircraft getting the high-
est priority and the second in line getting the sec-
ond highest priority and so on. We can apply our
algorithm (scheme 2) in order to obtain the optimal
routing strategy of the aircraft. The solution will
also yield the diverging (when the aircraft get sep-
arated) and converging (when they merge again)
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points of the platoon. This is actually a special
case of the algorithm proposed by us where all the
destination points are same.

8 Simulation

In this section, we discus the results of the
implementation of both of our algorithms in various
scenarios involving dynamic routing and traffic flow
management of multiple aircraft under uncertainty.

We have implemented both of the algorithms
in MATLAB and we ran our experiment on a stan-
dard PC. In the first experiment, there are two
aircraft with origins at O1 = [0, 96]T , and O2 =
[0,−96]T , and destinations at D1 = [312,−96]T

andD2 = [312, 96]T (all the units in n.mi.). The ve-
locities of the aircraft are 480 n.mi/hour. There is a
prediction of a convective weather. The storm zone
is a rectangle whose corner points are [168, 96]T ,
[168,−96]T , [192,−96]T , [192, 96]T , which may ob-
struct the nominal flight path of the aircraft. More-
over, there is a critical airspace within this zone
which will definitely be affected if the the storm
takes place. The critical zone is assumed a rect-
angle with corner points [168, 60]T , [168,−60]T ,
[192,−60]T , [192, 60]T (the shaded zone in figure
5). We assume that the weather information of
the portion of the airspace that can be reached in
15 minutes is deterministic and the probability of
the storm propagates in a Markovian fashion with
time. Also, the minimum separation distance be-
tween two aircraft, r = 5(n.mi) in this example.

The weather update is received once every 15
minutes. We discritize the time in 15 minutes time
intervals (stages). We define “0” as the state when
there is no storm, “1” as the state when only the
critical zone is affected by the storm, and “2” as
the state when the whole predicted zone has been
affected by the storm. The prediction matrix is a
follows,

P =





0.4 0.4 0.2
0.3 0.3 0.3
0.3 0.3 0.3



 .

P (i+ 1, j + 1) corresponds to the probability that
the storm state will be j in the next stage, if the

current storm state is i; i.e., P (2, 1) = 0.3 means
that the probability that the storm state will be 1
(no storm) in the next stage is 0.3 given the current
storm state is 0 (only critical zone is affected by the
storm).
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Figure 5: Routing of two aircraft.

In this scenario, we implemented both of our
strategies (scheme 1 and 2) and compared their
performances with the traditional strategy (TS)
where the convective zone is avoided as if it is
a deterministic obstacle while avoiding conflicts.
We define “ Delay Measure (DMA

i )” as the ex-
tra flight path required by aircraft i in a strat-
egy A in excess of the nominal flight path (which
is the Euclidean distance between the origin and
the destination; 366.34 (n.mi.) in this problem);
DMA

ij = DMA
i + DMA

j . Furthermore, we intro-
duce a performance metric “Improvement Measure

(IM
A/B
i )” of Strategy ‘A’ over ‘B’, which is the

percentage of the maximum possible improvement
gained for aircraft i by using strategy ‘A’ instead

of using strategy ‘B’; IM
A/B
i = 100×

DMB
i −DMA

i

DMB
i

,

and IM
A/B
ij = 100×

DMB
ij−DMA

ij

DMB
ij

. Higher IM corre-

sponds to better delay. In TS, if we resolve the con-
flict, aircraft 1 and 2 follow paths with a length of
455.12n.mi). DMTS

1 = DMTS
2 = 455.12−366.34 =

88.78, and DMTS
12 = DMTS

1 +DMTS
2 = 177.56.

Using the scheme 1, where both aircraft have
equal priority, aircraft 1 and 2 will initially fol-
low a path with an angle of 30.960 and −30.960

respectively till they get the next update. Both
of them will avoid the storm zone when there is
a storm and take a direct route if there is no
storm and the solution of the strategy is conflict
free. In this way, both the aircraft follow a flight
path that yield a expected delay of 398.67 (n.mi.).
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DM1
1 = DM1

2 = 32.33, IM
1/TS
1 = IM

1/TS
2 =

IM
1/TS
12 = 100 × 88.78−32.33

74.78 = 63.58%. Similarly
if we use scheme 2, where aircraft 1 has higher pri-
ority over the aircraft 2, aircraft 1 and 2 initially
fly at an angle −36.860 and 53.130 till they get the
next update. Similar to the scheme 1, both of them
will avoid the storm zone when there is a storm and
take a direct route if there is no storm and the so-
lution of the strategy is conflict free. The expected
distance travelled by the aircraft are 382.08 (n.mi.)

and 426.24(n.mi.) respectively; IM
2/TS
1 = 78.95%,

IM
2/TS
2 = 40.18%, and IM

2/TS
12 = 56.76%. The

summary of the result is presented in 1.

IM of Scheme 1 over TS IM of Scheme 2 over TS
Aircraft 1 56.71% 78.95 %
Aircraft 2 67.72% 40.18%
System 63.03 % 56.76%

Table 1: Improvement comparisons

We observe that we obtain a better system
delay in case of scheme 1. However, in real life,
depending upon the aircraft type, size, and hub
and spoke network, it might be more reasonable
to prioritize the routing strategy. Moreover, the
computation time for scheme 2 is 8.31 seconds,
which is much faster than the computation time
for scheme 1 (7.46 minutes). We can avoid a com-
binatorial explosion in case of scheme 2 and can
handle large number of aircraft. There is no sig-
nificant computation cost in adding an extra air-
craft. In order to illustrate this point, if we add one
more aircraft in the system with O3 = [0, 0]T and
D3 = [360, 0]T (figure 6), our algorithm gives the
routing strategy for aircraft 3 with an additional
4.84 secs. Aircraft 3 should have an initial angle

of 14.0360, which yields IM
2/TS
3 = 34.62% (for air-

craft 3) and IM
2/TS
123 = 51.23% (for the system).

In addition, we ran an experiment for the
same weather prediction where a platoon of aircraft
are positioned at O1 = [48, 48]T , O2 = [24, 24]T ,
and O3 = [0, 0]T . The destination point for all
of the them is [360, 0T ] and (priority of aircraft
1)>(priority of aircraft 2)>(priority of aircraft 3).
Initial vector provided by our algorithms for the
aircraft are 33.610, 36.650, and 38.650. The sys-
tem level IM obtained by using scheme 2 over TS
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Figure 6: Routing of three aircraft.

is 58.35% (figure 7).
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Figure 7: Routing of a platoon of aircraft.

9 Conclusion

In this paper, we provide a traffic flow man-
agement tool that can be used by Air Traffic Con-
troller or Airline Dispatcher to dynamically route
multiple aircraft under uncertain weather. Our so-
lution provides a routing strategy for aircraft which
minimizes the expected delay of the system. More-
over, as it provides less circuitous routes, it inhibits
the overloading of aircraft in the neighboring sec-
tors of the predicted storm zones. Consequently, it
restricts the ripple effect of delay due to convective
weather.

The complexity of the computation depends
on the number of the aircraft, the origin-destination
pair, size and location of the storms, type of storm,
level of discretization, and the rate of information
updates. The complexity of the algorithm, when
all the aircraft have equal priority, does not scale
well with the number of aircraft. However, when
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each aircraft has different priorities, the algorithm
is scalable; i.e., the algorithm scales polynomially
with the number of aircraft. In real life, a mixed
scheme is more appropriate; aircraft are prioritized
in a number of sets such that aircraft in different
sets have the different priorities, but the aircraft
within each set have the same priority. Our algo-
rithm can be readily applied to the mixed scheme.

Currently, we are developing a priority scheme
based on the game theoretic model that will be fair
to all the participants in the system. In addition,
we are working on proposing an approximate dy-
namic programming model that can handle large
scale problems involving a large number of aircraft
and convective zones.
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