
31F0607-009-R0

TMS Functional Description, Version 8.4 205
Document Version 13

Appendix C
FSM Algorithms

This section illustrates FSM Algorithms. The FSM Algorithms include Rationing By Schedule
(RBS++), Compression, Blanket, Ground Stop, Purge, AFP and Airborne Holding. In addition,
the Compression Algorithm calls on four subset algorithms: Intra-airline Compression, Inter-
airline Compression (Substitution), Compress Flight, and Move Up a Flight. Sub-section C.1
contains a list of common terms used throughout the FSM Algorithms. Sub-section C.2 explains
general processes and concepts common for the algorithms. Sub-sections C.3 - C.6 include
algorithm details for each FSM algorithm.

C.1 Common Terms

Auto-Delay Algorithm:
This is the set up for Compression, which takes into account the Earliest Runway Time of
Arrival (ERTA).

Effective AAR:
AAR minus GA Factor.

ETE:
ETE = max ((ETA – ETD) (CTA – CTD)) if configured to use Max ETE.
ETE = ETA – ETD if configured to use ETE.

Excluded Flight:
A flight that does not meets the criteria of being included in a GDP. These criteria include
factors such as the flights IGTA – taxi being outside the program start/end time, affix, and
removal status.

Exclude_and_Exempted Flight:
A flight whose ETA is later than the program start time, is excluded from the program, and
meets program exemption criteria such as exempt airport, departure time, or status.

Exempt Flight:
Flights that are airborne, departing within Now Plus parameter, specific spatial constraints and
any flight that meets the criteria of an “exempt flight” within the algorithm. An exempt flight’s
ETD will not receive delay. Exempt flights receive first priority during RBS++.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 206
Document Version 13

Floor_Time:
The Floor_Time of an open slot is the ETA of its associated flight, or 9999 if its associated flight
is cancelled. This results in open slots associated with cancelled flights being processed first.

Non-Exempt Flight: (2 types)
• Previously Controlled: Have second priority behind exempt flights during RBS++. These

flights are ordered by their ASLOT.
• Non-previously Controlled: Have third priority during RBS++. These flights are ordered

by IGTA, but may have to sort by ASLOT.

Open_Slot:
An open slot is created when a flight is cancelled or delayed, so all open slots have one and only
one associated flight. This association never changes. An open slot due to delay (at least one of
the delay flags is set in the flight record) is created if its associated flight’s ETA is later than
where the open slot will be displayed on the timeline, which is at either (1) Wheel_Arrival_Time
if the flight doesn’t have a slot, or (2) its slot time if the flight has a slot.

Plus_Time:
Value entered by the FSM user when implementing a GDP. The Plus_Time determines the
buffer past the data time in which flights will not be delayed. This is to insure that flights that are
already boarding are not issued a delay.

Slot_Hold:
Slot_Hold is a status that is applied to an Open_Slot so that it is not filled by the compression
process. A NAS user normally holds slots when they intend to use a slot but have not yet
determined which specific flight will be moved to fill that slot. A slot can also be held by ETMS
when a flight is timeout or NAS cancelled.

Slot_Time:
The time position of airport capacity allocated to a NAS user. This is the time that the users
flight should target for its arrival. The Slot_Time is used to create the Slot Identification, which
is a combination of the arrival airport, the slot time, and a suffix to differentiate multiple slots
issues for the same minute.

Virtual slot time:
Based on 15-minute effective AAR. The smallest slot time increment is one minute.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 207
Document Version 13

Wheel_Arrival_Time:
The arrival time used for rationing airport capacity. The IGTA is set by ETMS based on the first
information received for that flight. The IGTA will be set to SGTA, LGTA, or PGTA depending
on which is the first value receive by ETMS. IGTA is then adjusted for taxi-in time to determine
the Wheel_Arrival_Time.

C.2 FSM Algorithms – General Processes and Concepts

Dataset and Control Element
In FSM algorithms, we refer to the data obtained for a control element from ADL[1] updates as a
dataset for the element. As described in “Aggregate Demand List (ADL) / FSM Broadcast Data
Formats”[1], an ADL update contains an ADL Definition data block which provides general
information about the dataset. A control element can be an Airport, a FCA or a FEA.
Accordingly, the control element type of a dataset can be APT, FCA or FEA. If the control
element type is FCA or FEA, the dataset is often referred to as an airspace dataset or an airspace
element.

ADL Update Time, ADL Start Time and ADL End Time
ADL update time is the time at which the update is generated. For an airport arrival list, the list
includes all flights whose arrival time (ETA) is greater than or equal to the ADL Start Time and
less than or equal to the ADL End Time. For an FCA/FEA based arrival list, the list includes all
flights whose entry time (ENTRY) is greater than or equal to the ADL Start Time and less than
or equal to the ADL End Time.

Flight, Flight Record and Flight List
For an airport dataset, it contains two sections of flight list. One section is for arrival flights and
the other section is for departure flights. All the current FSM algorithms work with arrival
flights. Therefore, a flight, a flight record, or a flight list refers to arrival flights if not otherwise
specified. A flight record (or equivalently a flight) contains all the data about the flight obtained
from the ADL updates as well as derived data about the flight. For an airspace dataset, all the
flights are arrival flights.

Slots and Unassigned Slot List
There are two Delay Assignment Modes possible: DAS or GAAP. If a TMI uses a Delay
Assignment Mode of GAAP, the ADL update with the TMI will have an unassigned slot list data
block. FSM generates this list when the initial TMI is created and may be modified by
subsequent TMIs. When a flight is controlled by a TMI, a unique slot is assigned to the flight.

ETE (En Route Time)
The estimated en route time, ETE, is widely used in the algorithms. For each flight, it is
computed as follows[2]:

a. For an airport dataset, the ETE value is derived from the ETMS ETD / ETA values (ETA
– ETD).

b. For an airspace dataset, the ETE value is derived from the ETMS ETD / ENTRY values
(ENTRY – ETD).

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 208
Document Version 13

Earliest Departure Time and Earliest Arrival Time[2]

a. For each flight, the Earliest Departure Time for all non active flights is derived from the
first available of the following values

• ERTD
• If ERTD is not available but ERTA is available, then use ERTA – ETE
• LRTD
• LGTD + Taxi-Out
• PGTD + Taxi-Out
• SGTD + Taxi-Out

However, if the earliest departure time is earlier then the exempt time (to be defined
later), the earliest departure time shall be the later of the CTD (IGTD + TAXI_OUT if
newly controlled) or (old) earliest departure time.

b. For each flight, the Earliest Arrival Time for all non active flights is derived from the first
available of the following values

• ERTA for airport dataset or EENTRY for airspace dataset.
• If ERTA is not available for airport dataset or EENTRY is not available for

airspace dataset but ERTD is available, then use ERTD + ETE
• LRTD + ETE
• LGTD + Taxi-Out + ETE
• PGTD + Taxi-Out + ETE
• SGTD + Taxi-Out + ETE

However, if the earliest departure time is earlier then the exempt time (to be defined
later), the earliest departure time shall be the later of the CTD (IGTD + TAXI_OUT if
newly controlled) or (old) earliest departure time.

Wheel Departure Time and Wheel Arrival Time

a. For each flight, wheel departure time is derived from the first available of the following
values

• IGTD + Taxi-Out
• SGTD + Taxi-Out
• LGTD + Taxi-Out
• PGTD + Taxi-Out
• BETD

b. For an airport dataset, for each flight, wheel arrival time is derived from the first
available of the following values

• IGTA - Taxi-In
• SGTA - Taxi-In
• LRTA
• LGTA - Taxi-In
• PGTA - Taxi-In
• BETA

c. For an airspace dataset, for each flight, wheel arrival time is derived from the first
available of the following values

• IENTRY

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 209
Document Version 13

• ENTRY

C.3 Rationing by Schedule (RBS++) Algorithm
 for Ground Delay Program (GDP)
This function requires the following input parameters:

a) Start time = t0.
b) End time = t1.
c) Data Time.
d) Included AFIX.
e) Included Aircraft Type.
f) Included Carrier.
g) Delay Ceiling.
h) GDP Operation (RBS++ for this writing).
i) Program Rate values (for each 15 minutes time period).
j) Pop-Up factor values (for each 15 minutes time period).
k) Options for flight exemption from the departure end – by departure time or by departure

status. Plus_Time in minutes indicate how many minutes from the data time should be used
for this exemption; if exempt by departure status, Plus_Time is set to zero.

l) Option for ground stopped (GS) flight exemption – whether to exempt GS flights by its
departing status or not. Note that this option is moot if users already select “exempt by status”
in item (k).

m) Specific flight exemption.
n) Specific airport exemption.
o) Facilities (departing centers and airports) involved.
p) Distance exemption.
q) Schedule status and user category exemption.
r) Last GDP ending time.
s) Carriers/GA flights whose slot holding status to be overridden.
t) Delay Assignment Mode (DAS/GAAP).
u) Earliest_CTD = Data time + EARLIEST_CTD_NOW_PLUS (from configuration file)
v) Taxi-in, Taxi-out (from configuration file)
w) Purge_Before_Start flag, true if to purge previously controlled flights before the start time of

a GDP revision.
x) Purge_After_End flag, true if to purge previously controlled flights after the end time of a

GDP revision.
y) Compress_To_Last_CTA flag.

STEP 0. – Derive ETE, Earliest_Arrival_Time, Earliest_Departure_Time,
Wheel_Departure_Time and Wheel_Arrival_Time for every arrival flights in the control element

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 210
Document Version 13

STEP 0.1 – If there is an existing GDP in the current dataset and Purge_Before_Start flag (input
w) or Purge_After_End flag (input x) is set, run the “Purge Flights Outside Time Frame”1
process.

STEP 1. – Find all arrival flights included in the program. A flight is NOT included if any of the
following conditions is true:

a) It has been removed, OR [it has arrived, and its ETA is earlier than t0, and this is not
the first program of the day].

b) Its AFIX, Aircraft type, or major carrier does not fit specified criteria (input item (d),
(e), and (f)).

c) Its Wheel_Arrival_Time is outside of the specified program time frame (from t0
through t1).

This rule has 2 exceptions:
i) Its ETA is within the specified program time.
ii) It has a slot ID and its ETA is later than t0.

d) Its Wheel_Arrival_Time is within the specified program time frame, but the flight is
active and its ETA is earlier than t0, and this is the first program of the day.

e) It is not an exclude_and_exempted flight: defines as a flight whose ETA is later than
t0, and is excluded because of the above criteria, and is exempted from the Step 2
below.

If a flight passes all the criteria above, then it is included in the program.

STEP 2. – Use the exemption criteria specified by the user to determine if an included flight is
exempted from this program. Each following exemption criteria are checked against the included
flight.

a) Specific source airport (input item (n)).
b) Departure time or status (input item (k), (l)).

IF exempt by departure status is selected (input item (k)), the flight is exempted when
the flight’s ETD has a prefix letter of ‘A’ or ‘E’;
Else (exempt by departure time is selected (input item (k))

If to exempt GS flights by its departing status (input item (l)), then the flight is
exempted when its CTL_TYPE is “GS”, and its ETD has a prefix letter of ‘A’ or
‘E’;
IF the flight is still not exempted at this point, check its departure time:

If CTD is valid, Set t = CTD;
Else Set t = Wheel_Departure_Time;
The flight is exempted when t is less than (earlier than) Data Time (input
item (c)) + Plus_Time (input item (l)).

End If
End Else

c) Specific flight (input item (m)).

1 See “Purge Flights Outside Time Frame” documentation below.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 211
Document Version 13

d) Source facilities (input item (o)).
e) Distance (input item (p)).
f) Schedule status and user category (input item (q)).
g) Schedule-Arrival – If a flight is scheduled to arrive before the GDP start time, but is

delayed into the GDP time frame, this flight should be exempted to avoid double
penalty. Use Wheel_Arrival_Time as the scheduled arrival time if the flight is not
controlled, use CTA otherwise.

STEP 3. – Create 3 sorted queues for the included flights and assign the earliest_cta value for
those flights. Earliest_cta is a temporary placeholder for each flight to indicate the earliest time
the flight’s new CTA can be. These three queues are created as follows:

a) Create flight queues: Exempt_q (Q1), Non_Exempt_GDP_q (Q2) and
Non_Exempt_Non_GDP_Q (Q3).

b) Create temporary flight queues: scs_q, dvrec_q1 and dvrec_q2
c) For each included flight (flt)

If flt is exempted,
• If flt has a slot ID, set its earliest_cta = ETA of flt. Otherwise set its

earliest_cta = Min(ETA, Wheel_Arrival_Time).
• Put flt in Exempt_q (Q1).
• If flt is a Diversion Recovery Flight (See “C.3.2 Diversion Recovery

Flight” below for definition), put flt in dvrec_q1.
Else (flt is not exempted)

• If Exempt GS Flight By Status (input l) and flt is GS controlled, set t =
Data Time (input c). Otherwise set t = Data Time + Plus_Time (input k).

• If t > BETD, set earliest_cta = t + ETE. Otherwise set earliest_cta = Wheel
Arrival Time.

• If flt is a Diversion Recovery Flight, put the flight in Non_Exempt_q (Q2)
and dvrec_q2.

• Else if flt has a slot ID:
a. If flt is a SCS flight, put flt in Non_Exempt_Non_GDP_q (Q3) and

scs_q.
b. If control element of flt does not equal element name of the dataset,

put flt in Non_Exempt_Non_GDP_q (Q3).
c. Otherwise, put flt in Non_Exempt_q (Q2).

• Else if ETA of flt < Last GDP End Time (input r), put flt in
Non_Exempt_q (Q2).

• Otherwise, put flt in Non_Exempt_Non_GDP_q (Q3).
End of If-Else block.

End of For loop.

d) Q1 contains the exempted flights and the exclude_and_exempted flights. Sort flights in Q1
by ETA. For flights also in dvrec_q1 (Exempted Diversion Recovery flights), sort by their
(IGTA – Taxi_In) time.

e) Q2 contains non_exempted flights with a slot ID (but not a SCS flight) and pop-up flights
in previous program time frame. Sort flights in Q2 by slot time. For flights without CTA

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 212
Document Version 13

but their ETA before Last GDP End time (those are pop-up flights in previous program
time frame), assign their ETA as their slot time for sorting. For flights also in dvrec_q2
(Non Exempted Diversion Recovery flights), sort by their (IGTA – Taxi_In) time.

f) Q3 contains SCS (Slot Create Substitution) flights and other included flights that are not in
Q1 or Q2. Sort flights in Q3 by Wheel Arrival Time. For flights also in scs_q (SCS
flights), sort by their CTA.

STEP 4. – Modify the slot holding status based on user input (input item (s))

For every flight in the system, change the slot hold flag from ‘Y’ to ‘-‘ if its parent carrier
or the flight itself is to be overridden.

STEP 5. – Release all delay for some of the exempted flights.

Create a release_delay_q to contain exempted flights that meet the following conditions:
1) it is specifically exempted (input item (m)) OR

it is departing from an specifically exempted source airport (input item (n)) OR
it is not departing from a facility involved (input item (o)).

2) it has a slot ID.
3) It is not canceled.
4) Its CTD is later than Data time.

Release all delays for the flights in the release_delay_q by running them through the “+/-
Delay” algorithm with adjust minutes set to –999, and Plus_Time set to Plus_Time (input
item (k)) (ref. to “+/- Delay algorithm).

(Note: the following 2 statements are necessary since ETA of some flights is modified by
this step of delay releasing).
For each flight in release_delay_q, Set earliest_cta = ETA
Re-sort the Exempt_q.

STEP 6. – Create virtual slots.

 If Delay Assignment Mode (input item(t)) is GAAP then
 Delete all unassigned slots that is between t0 and t1
 Else if Assignment Mode is DAS then
 Delete all unassigned slots

a) For each 15 minutes in the specified program time, derive the effective Program Rate
based on the Program Rate and Pop-Up factor (input item (i), (j)). The effective
Program Rate equals to Program Rate minus Pop-Up factor for a given 15 minute
interval.

b) Based on the effective Program Rate, creates virtual slots and uniquely labels them by

their time position and a postfix letter, e.g. 1820A, 1830B,.. etc. The postfix letter is

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 213
Document Version 13

used to distinguish multiple slots at the same time position. Initially mark all slots
”unassigned”.

STEP 7. – Assign slots to flights in sequence of Q1, Q2, and Q3.

 a) Process the flights in the Exempt_q (Q1).

Get a flight from the queue, assign the available slot that is closest but not earlier
than the earliest_cta of the flight to the flight. Set the flight’s slot_time = time of
the assigned slot. Once a slot is assigned to a flight, mark it ”assigned”.

b) Process the flights in the Non_Exempt_GDP_q (Q2).

Same as (a).

c) Process the flights in the Non_Exempt_Non_GDP_q (Q3).
Same as (a).

STEP 8. – Assign OCTA/CTA to the flights (the OCTA is assigned only once for a flight, if a
flight already has a OCTA value, then this process will only apply to CTA).

a) Process the flights in Exempt_q (Q1).
Loop A- For each flight in Q1.

i) If the flight is an exclude_and_exempted flight, don’t process it,
throw away the associated slot and remove this flight from the
Exempt_q. Go back to the top of Loop A.

ii) Set its CTA = slot time.
iii) If the flight never had a CTA, set its CTD = ETD; Else if the flight

is not activated, also set its CTD = ETD; otherwise the flight’s CTD
remains the same as before.

End Loop A

b) Process the flights in the Non_Exempt_GDP_q (Q2) and Non_Exempt_Non_GDP_q
(Q3).

Loop B - For each flight in Q2, then Q3,

i) If (slot_time - BETA) is greater than specified Delay Ceiling (input

item (g)), set new_slot_time = BETA + Delay Ceiling. Modify the
slot ID to new_slot_time. Set slot_time = new_slot_time. Set CTA
= new_slot_time.

ii) Back calculate new_EDCT = slot_time - ETE. If new_EDCT is
earlier than Earliest_Depart_Time. Set new_EDCT =
Earliest_Depart_Time (Note: the Earliest_Depart_Time is defiened
as Earliest_CTD for the GS flight whose exemption status is
checked against departure status, and max(Earliest_CTD, Data
Time + Plus_Time) for all other flights).

iii) Set EDCT = new_EDCT; Set CTA = slot_time.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 214
Document Version 13

iv) Set ETD = EDCT; Set ETA = CTA.

End Loop B.

STEP 9. – Adjust all the open slots associated with the included flights (Auto-Delay Algorithm)

Loop C: for each flight in Q1, Q2, and Q3.

If the flight is canceled, update its associated open slot’s position to the flight’s
CTA, go back to the top of Loop C and process the next fight.

If slot time of the flight is before the Earliest Arrival Time, create a delayed open
slot and position it at the slot time of the flight.

If slot time of the flight is equal to or greater than its Earliest Arrival Time, remove
the open slot associated with the flight if already created.

 End Loop C

STEP 10. – Run Compression/Post Processing.

a) Run the compression (ref. to compression algorithm) with the following parameters:

1) Start time = GDP start time.
2) If Compress_To_Last_CTA flag is not set (input item y), end time = GDP end

time. Otherwise, compression end time is set to the Last CTA time.
3) Slot holding carrier override = None. (already considered in RBS++ algorithm

Step 4).
4) Window parameter = 0.
5) Data time = GDP data time.
6) Set the minimum move-up time to 1.

b) Post Processing to make sure no flight is issued a CTA before its Earliest_Arrival_Time

or after the ADL_end (input item w).
• Loop 10.1 - For every flight included

 If the flight is cancelled, go to the top of the loop for the next flight.
 If its Earliest_Arrival_Time is greater than ADL_end,

• Disassociate the slot of flt from the flt and mark it
“unassigned”.

• Create a new slot at ADL_end and assign it to flt.
• Set CTA = the new slot time.
• Set CTD = CTA – ETE.

 Else if its CTA is before its Earliest_Arrival_Time, put it in the
Offender_Q.

 End Loop 10.1

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 215
Document Version 13

• Sort Offender_Q by CTA in descending order.
• Sort all virtual slots allocated in STEP 6 by slot time in ascending order
• Loop 10.2 - For every flight (f1) in Offender_Q

 If f1 is active, continue to the next flight
 Mark f1’s slot to be “unassigned”
 Find the next virtual slot (s1) that is closest but not earlier than f1’s

Earliest_Arrival_Time,
 If s1 is unassigned to any flight
 Assign s1 to be f1’s slot
 Go back to Loop 10.1
 Else if s1 is associated with an active flight
 Go back to (c)
 Else if s1 is associated with an non-active flight (f2)
 Assign s1 to be f1’s slot
 Set f1 = f2
 Go back to (c)
 End If

 End Loop 10.2

c) If above Post Procesing moved any flight,
• Do Step 9 – ETA of some open slot may have changed.
• If Delay Assignment Mode (input item(t)) is GAAP then

Find the unassigned slot that is latest but before the open slot’s “floor
time”, swap the open slot and the unassigned slot.

 End If

d) Run the “Remove Small CTD Change Process”2. Pass all included flights as the
required parameter.

STEP 11. – Find and Modify CTA (slot time) out of range.

Some flights may have been assigned CTA (slot time) outside the ADL time range (-1,
+36 in reference to ADL update time). Find those flights and modify their CTA and slot
time to the last minute of the ADL time range, ADL_end (Step 0).

Loop 11.1 For each included flight (flt)

If the slot time of flt > ADL_end, do the following:
• Disassociate the slot of flt from the flt and mark it “unassigned”.
• Create a new slot at ADL_end and assign it to flt.
• Set CTA = the new slot time.
• Set CTD = CTA – ETE.

 End If
 End Loop 11.1

2 See “C.5.5 Remove Small CTD Change Process” documentation in Compression-Algorithm

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 216
Document Version 13

STEP 12. – Update Unassigned Slot List.
 If Delay Assignment Mode (input item(t)) is GAAP then

Collect all the virtual slots that are marked “unassigned” and are earlier than t1,
add them to the Unassigned Slot Queue.

 End If

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 217
Document Version 13

C.3.1 Purge Flights Outside Time Frame

This process is used to purge previously controlled flights outside the current program time frame
(i.e from program start time to program end time). For example, if there is an existing GDP
program in the dataset with time frame [t_old_0, t_old_1] and a GDP revision is run with a new
program time frame [t0, t1]. Suppose that t0 > t_old_0 and t1 < t_old_1. The operator may want
to purge previously controlled flights that have a controlled arrival time before t0 and/or a
controlled arrival time after t1.

STEP 1. Find all flights to be purged.
 For each flight in the arrival flight queue of the dataset, it is a to be purged flight if the
following are all true:

• Has a slot ID, and
• Control element of the flight equals the element name of the dataset, and
• Not an active flight, and
• (Purge_Before_Start flag is set and Wheel Arrival_Time of the flight < Start Time)

or (Purge_After_End flag is set and Wheel_Arrival_Time > End Time)
If true, put the flight into the To_Be_Purged_Q.

STEP 2. Pass the To_Be_Purged_Q to the FSM Purge Algorithm process (See FSM Purge
Algorithm documentation for details).

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 218
Document Version 13

C.3.2 Diversion Recovery Flight
This section describes the logic to identify Diversion Recovery Flights. See references [4][5] for
further details.

 A flight will be considered a “Diversion Recovery” when

a. DVREC field is NOT null (DVREC = A or G), and
b. DVT field is true (DVT = Y), and
c. Flight is not cancelled.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 219
Document Version 13

C.4 AFP Algorithm
1. Introduction

Airspace Flow Program (AFP) algorithm is based on the existing Ground Delay Program (GDP) algorithm. While GDP
is applied to an Airport, AFP is to be used for a Flow Evaluation Area (FEA) or a Flow Constrained Area (FCA). This
document will present the AFP algorithm in terms of the existing GDP algorithm.

2. Flight data
Flight data for AFP programs are from the ADL data for an FEA or an FCA. New data fields of flights for an FEA/FCA
are available in version 10 ADL data. Data fields used in the AFP algorithm are listed here for easy reference.

• ENTRY - Estimated Element Entry Time.
• IENTRY - Initial Element Entry Time.
• EENTRY - Earliest Element Entry Time.
• OENTRY - Original Element Entry Time.
• BENTRY - Based Element Entry Time.
• DO - Drop Out Flight flag.

3. AFP input parameters
Input parameters for an AFP program are as follows:

a) Program Start time = t0.
b) Program End time = t1.
c) Data Time = td.
d) Included Aircraft Type.
e) Included Carrier.
f) Delay Ceiling.
g) Operation Type (AFP for this writing).
h) AAR values (for each 15 minute time period).
i) Popup factor (for each 15 minute time period).
j) Options for flight exemption from the departure end – by departure time or by departure

status. Plus_Time in minutes indicate how many minutes from the data time should be
used for this exemption; if exempt by departure status, Plus_Time is set to zero

k) List of exempted flights.
l) List of exempted airports for departure flights (source airport).
m) List of exempted airports for arrival flights (dest airport).
n) List of exempted centers for departure flights (source center).
o) Schedule status and user category exemption.
p) Last AFP end time.
q) Carriers/GA flights whose slot holding status is to be overridden.
r) Delay Assignment Mode (DAS/GAAP).
s) Earliest_CTD = Data time + EARLIEST_CTD_NOW_PLUS (from configuration file)
t) Is_Override_AFP flag. It is used to indicate whether the AFP is an override AFP.
u) Taxi out time and taxi in time (from configuration file).
v) Purge_Before_Start flag, true if to purge previously controlled flights before the start time of a GDP revision
w) Purge_After_End flag, true if to purge previously controlled flights after the end time of a GDP revision.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 220
Document Version 13

x) Compress_To_Last_CTA flag.

4. Algorithm details
STEP 0 – If there is an existing GDP in the current dataset and Purge_Before_Start flag (input w)
or Purge_After_End flag (input x) is set, run the “Purge Flights Outside Time Frame”3 process.

STEP 1. - Find all arrival flights included in the program.
 Set Wheel_Arrival_Time = IENTRY

Set Wheel_Departure_Time = IGTD + taxi_out

 A flight is NOT included if any of the following conditions is true:
f) It has been removed, OR it has been rerouted out of the FCA/FEA, OR [it has arrived,

and its ETA is earlier than t0, and this is not the first program of the day].
g) Its Aircraft type, or major carrier does not fit specified criteria (input item (d) and (e)).
h) Its Wheel_Arrival_Time is outside of the specified program time frame (from t0

through t1).
This rule has 2 exceptions:
iii) Its ENTRY is within the specified program time.
iv) It has a slot ID and its ENTRY is later than t0.

i) Its Wheel_Arrival_Time is within the specified program time frame, but the flight is
active and its ENTRY is earlier than t0, and this is the first program of the day.

j) It is not an exclude_and_exempted flight: defines as a flight whose ENTRY is later
than t0, and is excluded because of the above criteria, and is exempted from the Step 2
below.

If a flight passes all the criteria above, then it is included in the program.

STEP 2. - Use the exemption criteria specified by the user to determine if an included flight is
exempted from this program. Each of the following exemption criteria is checked against the
included flight.

h) Specific source airport (input item (l)) or specific destination airport (input item (m)).
i) Departure time or status (input item (j)).

IF exempt by departure status is selected (input item (j)), the flight is exempted if the
flight’s ETD has a prefix letter of ‘A’ or ‘E’.
If exempt by departure time is selected then, a flight is exempted if its
Wheel_Departure_Time (use CTD if previously controlled) is less than Data Time +
Plus_Time.

j) Specific flight (input item (k)).
k) Source facilities (input item (n)).
l) Schedule status and user category (input item (o)).
m) Schedule-Arrival – If a flight is scheduled to arrive before the AFP start time, but is

delayed into the AFP time frame, this flight will be exempted to avoid double penalty.
Use Wheel_Arrival_Time as the scheduled arrival time if the flight is not controlled,
use CTA otherwise.

3 See “Purge Flights Outside Time Frame” in RBS++ algorithm document Appendix A

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 221
Document Version 13

n) Flight is previously controlled by an airport GDP. This is a case where the flight is
previously controlled by another element. The flight will be marked as exempt by
control element.

o) Flight is previously controlled by another AFP of a different FCA and this AFP is
NOT an override AFP (input item (t)). The flight will be marked as exempt by control
element.

STEP 3. - Create 3 sorted queues for the included flights and assign the earliest_cta value for
those flights.

Set ETE = ENTRY - ETD
Lb_cta is a temporary placeholder for each flight to indicate the earliest time the flight’s new slot
can be. These three queues are created as follows:

a) Create flight queues: Exempt_q (Q1), Non_Exempt_GDP_q (Q2) and
Non_Exempt_Non_GDP_Q (Q3).

b) Create temporary flight queues: scs_q, dvrec_q1 and dvrec_q2
c) For each included flight (flt)

If flt is exempted,
• If flt has a slot ID, set its earliest_cta = ETA of flt. Otherwise set its

earliest_cta = Min(ETA, Wheel_Arrival_Time).
• Put flt in Exempt_q (Q1).
• If flt is a Diversion Recovery Flight (See RBS++ algorithm document

Appendix B “Diversion Recovery Flight” for definition), and the element
type of the dataset is APT or flt is controlled by the same element of the
dataset, put flt in dvrec_q1.

Else (flt is not exempted)
• If Exempt GS Flight By Status (input l) and flt is GS controlled, set t =

Data Time (input c). Otherwise set t = Data Time + Plus_Time (input k).
• If t > BETD, set earliest_cta = t + ETE. Otherwise set earliest_cta = Wheel

Arrival Time.
• If flt is a Diversion Recovery Flight (See RBS++ algorithm document

Appendix B “Diversion Recovery Flight” for definition), and the element
type of the dataset is APT or flt is controlled by the same element of the
dataset, put the flight in Non_Exempt_q (Q2) and dvrec_q2.

• Else if flt has a slot ID:
a. If flt is a SCS flight, put flt in Non_Exempt_Non_GDP_q (Q3) and

scs_q.
b. If control element of flt does not equal element name of the dataset,

put flt in Non_Exempt_Non_GDP_q (Q3).
c. Otherwise, put flt in Non_Exempt_q (Q2).

• Else if ETA of flt < Last GDP End Time (input r), put flt in
Non_Exempt_q (Q2).

• Otherwise, put flt in Non_Exempt_Non_GDP_q (Q3).
End of If-Else block.

End of For loop.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 222
Document Version 13

d) Q1 contains the exempted flights and the exclude_and_exempted flights. Sort flights in Q1
by ETA. For flights also in dvrec_q1 (Exempted Diversion Recovery flights), sort by their
(IGTA – Taxi_In) time.

e) Q2 contains non_exempted flights with a slot ID (but not a SCS flight) and pop-up flights
in the previous program time frame. Sort flights in Q2 by slot time. For flights without
CTA but their ETA is before Last GDP End time (those are pop-up flights in the previous
program time frame), assign their ETA as their slot time for sorting. For flights also in
dvrec_q2 (Non Exempted Diversion Recovery flights), sort by their (IGTA – Taxi_In)
time.

f) Q3 contains SCS (Slot Create Substitution) flights and other included flights that are not in
Q1 or Q2. Sort flights in Q3 by Wheel Arrival Time. For flights also in scs_q (SCS
flights), sort by their CTA.

STEP 4 - Modify the slot holding status based on user input (input item (q))

For every flight in the system, change the slot hold flag from ‘Y’ to ‘-‘ if its parent carrier
or the flight itself is to be overridden.

STEP 5.- Release all delay for some of the exempted flights.

Create a release_delay_q to contain exempted flights that meet the following conditions:
5) It is NOT controlled by another element.
6) It is a previously controlled flight with CTD > (Data Time + Plus Time) and it is not a

cancelled flight and
7) it is specifically exempted OR

it is departing from/arriving at a specifically exempted source/dest airport OR
it is departing from a specifically exempted source center.

Release all delays for the flights in the release_delay_q by running them through the “+/-
Delay” algorithm with adjust minutes set to –999, and Plus_Time set to 0 minute (ref. to
“+/- Delay algorithm).

Note: the following 2 statements are necessary since ENTRY of some flights is modified
by this step of delay releasing.
For each flight in release_delay_q, Set Lb_eta = ENTRY
Re-sort the Exempt_q.

STEP 6.- Create virtual slots.

If Delay Assignment Mode (input item(t)) is GAAP then
 Delete all unassigned slots that are between t0 and t1
Else if Assignment Mode is DAS then
 Delete all unassigned slots

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 223
Document Version 13

c) Start from hour of the program start time, create slots for each 15 minutes based on the
specified Program Rate and the Pop-Up factor. The effective Program Rate equals the
Program Rate minus Pop-Up factor for a given 15 minute interval.

d) Based on the effective Program Rate, create virtual slots and uniquely label them by

their time position and a postfix letter, e.g. 1820A, 1830B, etc. The postfix letter is
used to distinguish multiple slots at the same time position. Initially mark all slots
available.

STEP 7. - Assign slots to flights in sequence of Q1, Q2, and Q3.

 a) Process the flights in the Exempt_q (Q1).

Get a flight from the queue, find the earliest available slot such that the slot time is
>= Lb_cta of the flight. Once a slot is assigned to a flight, mark it as unavailable.

If the flight is exempted by control element (see STEP 2, items g and h), remove
the slot from the slot list and remove the flight from the exempted flight queue.
This will ensure that the slot will not be used in any other way and the flight will
not be processed any further.

Expand the slot list into future hours if necessary.

b) Process the flights in the Non_Exempt_GDP_q (Q2).

Same as (a).

c) Process the flights in the Non_Exempt_Non_GDP_q (Q3).
Same as (a).

 If Delay Assignment Mode (input item(s)) is GAAP then

Collect all the slots that are not assigned to any flight that are between t0 and t1,
and replace the slots in the Unassigned Slot Queue between t0 and t1 with the
these slots.

STEP 8. - Assign OCTA/CTA to the flights (the OCTA is assigned only once for a flight, if a
flight already has a OCTA value, then this process will only apply to CTA).

Set earliest_wheel_off = max(Earliest_CTD, Data Time + Plus Time).
Let Earliest_Dz denote that Earliest Departure Time and Earliest_Az denote the Earliest
Arrival Time. If the Earliest_Dz < Data Time + Plus time and the flight is NOT active,
then both Earliest_Dz and Earliest_Az will be modified as follows:

If the flight is previously controlled then
 Let t = min(CTD, Data Time + Plus Time)
 If t > Earliest_Dz then
 Earliest_Dz = t
 End If
Else
 Let t = IGTD + taxi_out

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 224
Document Version 13

 If t > Earliest_Dz then
 Earliest_Dz = t
 End If
End If
Earliest_Az = Earliest_Dz + ETE.

b) Process the flights in Exempt_q (Q1).

Loop A- For each flight in Q1.
iv) If the flight is an exclude_and_exempted flight, don’t process it, mark the

associated slot as available (unassigned) and remove this flight from the
Exempt_q. Go back to the top of Loop A.

v) Set its CTA = slot time.
vi) Set flight CTD. Let new_ctd = slot time – ETE.

If flight is active then
 If previously controlled then
 Keep its CTD unchanged.
 Else
 Set its CTD = ETD.
Else if new_ctd < earliest_wheel_off and previously controlled then
 Let t = previous CTD
 If t >= earliest_wheel_off then
 Set its CTD = earliest_wheel_off
 Else if t >= Earliest_Dz then
 Keep its CTD unchanged
 Else
 Set its CTD = max(new_ctd, Earliest_Dz)
Else if new_ctd < earliest_wheel_off then
 Let t = min(ETD, earliest_wheel_off)
 If (t < Earliest_Dz) then
 Set its CTD = Earliest_Dz
 Else
 Set its CTD = t
Else
 Set its CTD = new_ctd
End Of If Block

vii) if OCTA is not yet set, set OCTA = CTA and OCTD = CTD.

End Loop A

c) Process the flights in the Non_Exempt_GDP_q (Q2) and Non_Exempt_Non_GDP_q
(Q3).

Loop B - For each flight in Q2, then Q3,

v) calculate its ETE as defined in the top part of STEP 3.
vi) If (slot_time - BENTRY) is greater than specified Delay Ceiling, set

new_slot_time = BENTRY + Delay Ceiling. Modify the slot ID to

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 225
Document Version 13

new_slot_time. Set slot_time = new_slot_time. Set CTA =
new_slot_time.

vii) Back calculate new_ctd = slot_time - ETE. If new_ctd is earlier than
earliest_wheel_off, set new_ctd = earliest_wheel_off. Set CTD =
new_ctd.

viii) If OCTA is not yet set, set OCTA = CTA and OCTD = CTD.

ix) Let new_etd = CTD and new_entry = CTA.

If flight is a delayed flight and is in the Open Slot list, then
 Update the open slot.
 If new_etd < earliest_wheel_off then
 new_etd = earliest_wheel_off
 new_entry = new_etd + ETE
 End if
End if
Set ETD = new_etd and set ENTRY = new_entry

End Loop B.

STEP 9. Adjust all the open slots associated with the included flights (Auto-Delay Algorithm)

Loop C: for each flight in Q1, Q2, and Q3.
If the flight is cancelled, update its associated open slot’s position to the flight’s CTA,
go back to the top of Loop C and process the next flight.

If slot time of the flight is before the Earliest Arrival Time, create a delayed open slot
and position it at the slot time of the flight.

If slot time of the flight is equal to or greater than its Earliest Arrival Time, remove
the open slot associated with the flight if already created.

 End Loop C

Step 10 Run Compression.

Compression is run as in the GDP (RBS++) algorithm. For open slots used in AFP
compression, only the open slots from the controlled flights of the same control element
are used. Drop Out (rerouted) flights are excluded from the open slot list and compression
process. To perform compression using the same algorithm, the following mapping of the
flight fields is performed:

Data Field Swap With
ENTRY ETA
IENTRY IGTA
EENTRY ERTA
OENTRY OETA

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 226
Document Version 13

BENTRY BETA

a) Run the compression (ref. to compression algorithm) with the following parameters:

7) Start time = AFP start time.
8) If Compress_To_Last_CTA flag is not set (input item x), end time = AFP end

time. Otherwise, compression end time is set to the Last CTA time.
9) Slot holding carrier override = None. (already considered in Step 4).
10) Window parameter = 0.
11) Data time = AFP data time.
12) Set the minimum move-up time to 1.

b) Post Processing to make sure no flight is issued a CTA before its Earliest_Arrival_Time

or after the ADL_end (input item w).
• Loop 10.1 - For every flight included

 If the flight is cancelled, go to the top of the loop for the next flight.
 If its Earliest_Arrival_Time is greater than ADL_end,

• Disassociate the slot of flt from the flt and mark it
“unassigned”.

• Create a new slot at ADL_end and assign it to flt.
• Set CTA = the new slot time.
• Set CTD = CTA – ETE.

 Else if its CTA is before its Earliest_Arrival_Time, put it in the
Offender_Q.

 End Loop 10.1

• Sort Offender_Q by CTA in descending order.
• Sort all virtual slots allocated in STEP 6 by slot time in ascending order
• Loop 10.2 - For every flight (f1) in Offender_Q

 If f1 is active, continue to the next flight
 Mark f1’s slot to be “unassigned”
 Find the next virtual slot (s1) that is closest but not earlier than f1’s

Earliest_Arrival_Time,
 If s1 is unassigned to any flight
 Assign s1 to be f1’s slot
 Go back to Loop 10.1
 Else if s1 is associated with an active flight
 Go back to (c)
 Else if s1 is associated with an non-active flight (f2)
 Assign s1 to be f1’s slot
 Set f1 = f2
 Go back to (c)
 End If

 End Loop 10.2

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 227
Document Version 13

c) If above Post Procesing moved any flight,

• Do Step 9 – ETA of some open slot may have changed.
• If Delay Assignment Mode (input item(t)) is GAAP then

Find the unassigned slot that is latest but before the open slot’s “floor
time”, swap the open slot and the unassigned slot.

 End If

e) Run the “Remove Small CTD Change Process”4. Pass all included flights as the
required parameter.

Step 11 – Find and Modify CTA (slot time) out of range.

Some flights may have been assigned CTA (slot time) outside the ADL time range (-1,
+36 in reference to ADL update time). Find those flights and modify their CTA and slot
time to the last minute of the ADL time range, ADL_end (Step 0).

Loop 11.1 For each included flight (flt)

If the slot time of flt > ADL_end, do the following:
• Disassociate the slot of flt from the flt and mark it “unassigned”.
• Create a new slot at ADL_end and assign it to flt.
• Set CTA = the new slot time.
• Set CTD = CTA – ETE.

 End If
 End Loop 11.1

Step 12 – Update Unassigned Slot List.
 If Delay Assignment Mode (input item(t)) is GAAP then

Collect all the virtual slots that are marked “unassigned” and are earlier than t1,
add them to the Unassigned Slot Queue.

 End If

4 See “C.5.5 Remove Small CTD Change Process” documentation in Compression-Algorithm

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 228
Document Version 13

C.5 Compression Algorithm
 (“Prioritize Member”)
This function requires the following input parameters:

a) start time = t0
b) end time = t1
c) slot holding carrier override(s)
d) window parameter (default = 0)
e) data time
f) Minimum move up time
g) Earliest_CTD = Data time + EARLIEST_CTD_NOW_PLUS (from configuration file)
h) Delay Assignment Mode (DAS/GAAP).
i) Compress_To_Last_CTA flag.

STEP 0 - Modify the slot holding status based on user input (input item (c))

For every flight in the system, change the slot hold flag from ‘Y’ to ‘-‘ if its parent carrier
or the flight itself is optioned to be overridden.

STEP 1 - Find all eligible open slots for Compression. If the Compress_To_Last_CTA flag is
true, the end time (t1) is set to the last CTA time of the arrival flights. The eligibility check of an
open slot is as follows (for both pure compression operation and compression within RBS++):

a) It is displayed on the timeline between t0 and t1, and
b) Its associated flight has a slot ID (the open slot is displayed in a solid color), and
c) Its associated flight is not a pop-up flight (Ctl_Type = FA).
After passing the above 3 conditions, check if its associated flight is canceled and the slot-hold
flag is on, which makes the open slot not eligible. Otherwise the open slot is eligible. For each
eligible open slot, its “floor time” is set to the Earliest Arrival Time of its associated flight if it is
a delayed flight[2]. Set its “floor time” to a value greater than the last CTA time if the associated
flight is canceled.

Note: An open slot is created when a flight is canceled or delayed, so all open slots have one and
only one associated flight. This association never changes. An open slot due to delay (at least
one of the delay flags is set in the flight record) is created if its associated flight’s ETA is later
than where the open slot will be displayed on the timeline, which is at either (1)
Wheel_Arrival_Time if the flight doesn’t have a slot, or (2) its slot time if the flight has a slot.

STEP 2 - Put these open slots in an open slot queue (OSq) sorted in reversed order by their “floor
time”. This results in open slots associated with canceled flights being processed first.

STEP 3 - Find all arrival flights eligible for Compression. A flight is eligible if:

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 229
Document Version 13

a) It is not canceled.
b) It has a slot ID.
c) It is not a pop-up flight (Ctl_Type = DAS).
d) Its ETA is later than or equal to t0.
e) It is not active.
f) Its control element is the same as the control element of the dataset.
g) It is not a DO flight.
h) Its ETD is later than or equal to the earliest departure time of all flights.

For pure compression - The earliest departure time is Earliest_CTD (input item (g));
For Compression within RBS++ - The earliest departure time is calculated in RBS++

algorithm Step 3 (b) (i.e. If the flight is checked against "departure status exemption" instead of
"departure time exemption" (input item (k) in RBS++ algorithm), set the earliest departure time to
the data time; otherwise set the earliest departure time to data time + Plus_Time.)

STEP 4 - Put these eligible flights in a flight queue (Fq), sorted by their ETA.

STEP 5 - Run the Compression algorithm.

Loop 1 - for each open slot in the OSq
a) Set the “floor time” for the open slot (in case its associated flight has moved).
b) If the “floor time” for the open slot is earlier then or equal to the current position

of the open slot, remove the open slot, get back to the top of the Loop 1.
c) Create a temporary flight queue (TFq) that contains all eligible flights in Fq.
d) If the flight associated with this open slot is a “former pop-up” (DAS_Delay flag is

set) or the flight is removed, then do Loop 1.1, otherwise do Loop 1.2.

Loop 1.1
i) Run inter-airline compression5 using flights in the TFq. The run will move

only the first qualified flight in the TFq.
ii) If a flight is moved, check the current position of the open slot, if it is later

than/equal to the “floor time” or if it is later than/equal to t1, than break out
of the Loop 1.1, go to (e). If neither condition is true in comparing these
times, go back to the top of Loop 1.1.

iii) If no flights have been moved due to the inter-airline compression, which
means no flight can be moved with configured Minimum Move Up Time,
then do Loop 1.1.1

Loop 1.1.1
• Decrement Minimum Move Up Time by 1 minute.
• If Minimum Move Up is less than or equal to 0, break out of Loop

1.1.1.
• Run inter-airline compression with decremented Minimum Move Up

Time.
• If a flight is moved, break out of the Loop 1.1.1.

5 See “The Inter-Airline Compression Algorithm (for one open slot)” documentation in Appendix B

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 230
Document Version 13

End Loop 1.1.1

Reset the Minimum Move Up Time to its original (configured) value.
If any flight is moved

Check the current position of the open slot, if it is later than/equal to
the “floor time” or if it is later than/equal to t1, than break out of the
Loop 1.1, go to (e). If neither condition is true in comparing these
times, go back to the top of Loop 1.1.

Else if no flight is moved and Delay Assignment Mode=GAAP (input item
(h))

Find the nearest and later unassigned slot and swap it with this open
slot. If an unassigned slot is found and moved, check the current
position of the open slot, if it is later than/equal to the “floor time”
or if it is later than/equal to t1, than break out of the Loop 1.1, go to
(e). If neither condition is true in comparing these times, go back to
the top of Loop 1.1.

End If
End Loop 1.1
Go to (e).

Loop 1.2
iv) Run intra-airline compression (substitution)6 using flights in the TFq. The

run will exhaust the TFq and move as many flights as possible.
v) If any flight is moved due to substitution, check the current position of the

open slot, if it is later than/equal to the “floor time” or if it is later
than/equal to t1, than break out of the Loop 1.2.

vi) Run inter-airline compression7 using flights in the TFq. The run will move
only the first qualified flight in the TFq.

vii) If any flight is moved, check the current position of the open slot, if it is
later than/equal to the “floor time” or if it is later than/equal to t1, than
break out of the Loop 1.2, go to (e). If neither condition is true in
comparing these times, go back to the top of Loop 1.2.

viii) If no flights have been moved due to the intra-airline and inter-airline
compression, which means no flight can be moved with configured
Minimum Move Up Time, then
• Decrement Minimum Move Up Time by 1 minute.

If the Minimum Move Up is less than or equal to 0
 If Delay Assignment Mode=GAAP (input item (h))

Find the nearest and later unassigned slot and swap it with
this open slot.
If an unassigned slot is found and moved

check the current position of the open slot, if it is
later than/equal to the “floor time” or if it is later
than/equal to t1, than break out of the Loop 1.2.

6 See “The Intra-Airline Compression (Substitution) Algorithm (for one open slot)” documentation in Appendix A
7 See “The Inter-Airline Compression Algorithm (for one open slot)” documentation in Appendix B

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 231
Document Version 13

Else
 Break out of Loop 1.2
End If

 Else
 Break out of Loop 1.2
 End If
End If

End Loop 1.2
e) If the current position of the open slot is later than/equal to the “floor time”, then

remove the open slot.
f) If the associated flight of the open slot is canceled, modify the ETA of this

canceled flight to where its open slot’s current position is.

End Loop 1

STEP 6 - Validate the open slots because of the possible movement of its associated flight.

Loop 2 - for each open slot in the system

a) If its associated flight is canceled, get back to the top of the Loop 2.
b) If the current position of the open slot is later than its associated flight’s ETA, then

remove the open slot.

End Loop 2

STEP 7 - Recreate the new slot-holding carrier queue.

STEP 8 - For pure Compression, run the “Remove Small CTD Change Process”8. Pass eligible
flights (Fq) as the required parameter.

8 See “C.5.5 Remove Small CTD Change Process” documentation

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 232
Document Version 13

C.5.1 The Intra-airline Compression (Substitution) Algorithm

(for one open slot)

This function requires the following input parameters:

a) An open slot - osp.
b) A flight record (open_flt) which is associated with osp.
c) The flight queue (TFq) containing all eligible flights for Substitution.
d) Earliest_depart time. For pure compression, the value of this field equals to Data time +

EARLIEST_CTD_NOW_PLUS (from configuration file); For compression within RBS++,
the value of this field is calculated in RBS++ algorithm step 3(b).

e) Window Parameter.
f) Minimum move up time.

If the open_flt is a GA/ Military flight, a former pop-up flights, or is removed, then break out
of this function (intra-airline compression does not apply to open slots associated with those
flights).

Do Loop 1 - for each flight in the TFq, say “flt”.

a) If flt does not belong to the same parent airline as open_flt, then go back to the top
of Loop 1.

b) If flt is a GA/military flight, a “former pop-up” or is removed, then go back to the
top of Loop 1.

c) If the ETA of flt is earlier than or equal to the current position of osp or is later
than the “floor time” of osp, then go back to the top of Loop1.

d) Set bottom_time = the current position of osp + Window Parameter.
e) Derive the earliest_eta for the flight:

i) Set earliest_eta = Earliest_Arrival_Time
ii) Set earliest_etd = Earliest_Arrival_Time - ETE
If earliest_etd is earlier than Earliest_depart, then Set earliest_eta = Earliest_depart
+ ETE

f) If earliest_eta is later than or equal to the bottom_time then go back to the top of
Loop 1. Otherwise it is possible to move flt up:
i) Set d_time = max(earliest_eta of flt, the current position of osp) (Note:

d_time is potentially where flt ends up)
ii) Set o_time = ETA of flt (Note: o_time is where flt is at)

g) If o_time minus d_time is greater than/equal to Minimum Move Up Time, then
move flt up from o_time to d_time (see algorithm of move up a flight); remove
this flight from the TFq, so it will not be processed again for the same open_slot.

h) If moved, check the current position of the open slot, if it is later than/equal to the
“floor time”, than break out of the Loop 1.

End Loop 1

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 233
Document Version 13

C.5.2 The Inter-airline Compression Algorithm
(“Prioritize Member” for one open slot)

This function requires the following input parameters:

a) An open slot - osp.
b) A flight record (open_flt) which is associated with osp.
c) The flight queue (TFq) containing all eligible flights for Compression.

d) Window Parameter.

Step 1. Run Compress_Flight algorithm with member-only option. The run will move
only the first qualified flight in the TFq. If a flight is moved due to this member-only
compression, return.
Step 2. Run Compress_Flight algorithm with non-member-only option.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 234
Document Version 13

C.5.3 The Compress Flight Algorithm

This function requires the following input parameters:

a) An open slot - osp.

b) A flight record (open_flt) which is associated with osp.

c) The flight queue (TFq) containing all eligible flights for Compression.

d) Option flag of “member-only” or “non-member-only”.

e) Earliest_depart time. For pure compression, the value of this field equals to Data
time + EARLIEST_CTD_NOW_PLUS (from configuration file); For compression
within RBS++, the value of this field is calculated in RBS++ algorithm step 3(b).

f) Window Parameter.

g) Minimum move up time.

Do Loop 1 - for each flight in the flight queue, say “flt”.

a) If the option flag is “member-only”, go back to the top of Loop 1 if flt does not
belong to a CDM Member carrier.

b) If the option flag is “non-member-only”, go back to the top of Loop 1 if flt belongs
to a CDM Member carrier.

c) If open_flt is not a former pop-up, and is not a removed flight, and flt belongs to
the same parent airline as open_flt, then go back to the top of Loop 1.

d) If the ETA of flt is earlier than the current position of osp or is later than the “floor
time” of the osp, then go back to the top of Loop 1.

e) Set bottom_time = the current position of osp + Window Parameter.
f) Derive the earliest_eta for flt:

i) Set earliest_eta = Earliest_Arrival_Time
ii) Set earliest_etd = Earliest_Arrival_Time - ETE
iii) If earliest_etd is earlier than Earliest_depart then Set earliest_eta =

Earliest_depart + ETE
g) If earliest_eta is later than the bottom_time then go back to the top of Loop 1.

Otherwise it is possible to move flt up:
i) Set d_time = max(earliest_eta of flt, the current position of osp)
ii) Set o_time = ETA of flt.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 235
Document Version 13

h) If o_time minus d_time is greater than/equal to Minimum Move Up Time, then
move flt up from o_time to d_time (see algorithm of move up a flight). Remove flt
from TFq so it will be processed for this osp again. Break out of Loop 1

End Loop 1

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 236
Document Version 13

C.5.4 The Move Up Flight Algorithm

This function requires the following input parameters:

i) A flight record (flt) which is to be swapped with an open slot.

j) An open slot (osp).

k) A flight record (open_flt) which is associated with osp.

l) The time from where the flt is moving (ot)

m) The time to where the flt is moving (dt)

if flt and open_flt is the same flight, then return immediately

If the slot time of flt is later than or equal to the slot time of the open_flt

i) Swap the slot ID (and thus the slot time) between open_flt and flt.
ii) Set CTA of flt = new slot time of flt ; Set CTA of open_flt = new slot

time of open_flt.
iii) For open_flt, derive the new CTD (= CTA – ETE). If open_flt is not active

and the new CTD is later than the CTD of open_flt, set CTD of the
open_flt = new CTD.

iv) For flt, derive the new CTD (= CTA – ETE). If the new CTD is earlier
than BETD, set new CTD = BETD. Then set CTD and ETD of flt = the
new CTD.

v) Set ETA of flt = CTA of flt.
vi) Set the current position of osp = CTA of the open_flt.

If the slot time of flt is earlier than the slot time of the open_flt
i) Modify the ETA of flt to dt.
ii) Derive the ETD of flt using ETA- ETE.
iii) If ETD of flt is earlier than its BETD, set ETD = BETD, and derive ETA =

(new) ETD + ETE.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 237
Document Version 13

C.5.5 Remove Small CTD Change Process

This process is used to eliminate small CTD changes in a TMI so that the number of CT messages
can be reduced (see ref. [3] for details). A configurable constant, “Minimum CTD Change”, is
specified in the FSM configuration file (currently the value is set at 2 minutes). The input
parameter to this procedure is included_flt_q (included flights of the TMI). Before the
application of the algorithms of the TMI, a copy of the dataset is saved so that the flight data is
reserved before any change is made. In the following list of steps, the flight modified by the
algorithms is referred to as flt (new flight) and the reserved flight data is called prev_flt
(previously saved flight data) of the same flight.

For each flight (flt) in the included_flt_q

1. Get the prev_flt from the saved dataset.
2. Check if flt is eligible for CT message reduction rule. It is true only if prev_flt is:

• Not a cancelled flight, and
• Not a DO flight, and
• CTD is not null, and
• Control Type is not GS, and
• CT message has been sent (see below for the logic).

CT has been sent if [3]
• OCTD – ADL update time <= 55 minutes, or
• CTD – ADL update time <= 40 minutes.

3. If step 2 is true, continue to the next step; otherwise go to step 1 for the next flight.
4. Set earliest_ctd = Earliest Departure Time of flt.
5. Set prev_ctd = CTD of prev_flt.
6. Set new_ctd = CTD of flt.
7. If |new_ctd – prev_ctd| > 0 and |new_ctd – prev_ctd| <= Minimum CTD Change and

(prev_ctd >= earliest_ctd or new_ctd < earliest_ctd), set CTD of flt = prev_ctd.
End of for_loop.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 238
Document Version 13

C.5.6 Blanket Algorithm

Note that the “program” in the following text refers to the blanket delay program.
This function requires the following input parameters:

a) Start time = t0.
b) End time = t1.
c) Data Time.
d) Included AFIX.
e) Included Aircraft Type.
f) Included Major Carrier.
g) Adjusted minutes (a_min).
h) Plus_Time in minutes indicate how many minutes within the data time should be used for

departure exemption.
i) Specific flights exemption.
j) Specific airports exemption.
k) Facilities (centers/airports) involved.
l) Schedule status and user category exemption.
m) Earliest_CTD = Data time + EARLIEST_CTD_NOW_PLUS (from configuration file)

STEP 1 - Find all arrival flights included in the program. A flight is included if

a) Its AFIX, Aircraft type, and Major Carrier fit specified criteria. And
b) It has a slot ID. And
c) Its ETA is within the specified program time (from t0 through t1).

STEP 2 - Use the exemption criteria specified by the user to determine if an included flight is
exempted from this program. Each exemption criteria are checked against the flight:

p) Specific source airport (input item (j)).
q) Departure time.

If CTD is valid, Set t = CTD;
Else Set t = Wheel_Departure_Time;
The flight is exempted when t is less than (earlier than) Data Time (input item (c))
+ Plus_Time (input item (h)).

r) Specific flight (input item (i)).
s) Source facilities (input item (k)).
t) Schedule status and user category (input item (l)).
u) Schedule-Arrival – If a flight is scheduled to arrive before the t0, but is delayed into

the “+/- Delay” time frame, this flight should be exempted to avoid double penalty.
Wheel_Arrival_Time is used as the scheduled arrival time if the flight is not
controlled, CTA is used otherwise.

Add the flight in the Non_Exempt_q if it is not exempted.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 239
Document Version 13

STEP 3 - Adjust delays to the flights in the Non_Exempt_q.

 Loop 1 – process each flight in the Non_Exempt_q

a) Get a flight from the Non_Exempt_q,
b) Get the slot time of this flight.

If a_min is positive -
i. New_slot_time = slot time + a_min.
ii. If new_slot_time is greater than ADL end time, set new_slot_time = ADL

end time..
iii. Modify the slot ID based on new_slot_time.
iv. Set CTA = new_slot_time.
v. Set new_CTD = CTA - ETE.
vi. If the flight is not active, then Set CTD = new_CTD.
vii. If ETA is earlier than CTA, Set ETA = CTA; otherwise set ETD =

new_CTD .
 Else If a_min is negative

 Set earliest_dz = max(Earliest_CTD, Data Time + Plus_Time).

i. new_slot_time = slot time + a_min.
ii. If CTD of the flight is less than or equal to earliest_dz, remove the

flight from the flight queue and go to the top of the loop for the next
flight.

iii. Set earliest_az = the Earliest Arrival Time of the flight.
iv. If earliest_az is later than ETA, set earliest_az = ETA.
v. If new_slot_time is earlier than earliest_az, than set new_slot_time =

earliest_az.
vi. Set new_CTD = new_slot_time - ETE.
vii. If new_CTD is earlier than than earliest_dz, than Set new_CTD =

earliest_dz; Set new_slot_time = earliest_dz + ETE.
viii. If new_slot_time is greater than ADL end time, set new_slot_time =

ADL end time.
ix. Modify the slot ID based on new_slot_time.
x. If the flight is not active, then set CTD = new_CTD.
xi. Set CTA = new_slot_time.
xii. Set new ETA = ETA + a_min.
xiii. If new ETA is less than CTA, set new ETA = CTA.
xiv. If new ETA is less than earliest_az, set new ETA = earliest_az.
xv. Set ETA = new ETA.
xvi. Set ETD = ETA – ETE.

 End If

End Loop 1

STEP 4 - Adjust associated open slot of the flights based on the flights’ new slot time position.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 240
Document Version 13

STEP 5 - Run the “Remove Small CTD Change Process”9. Pass the Non_Exempt_q as the
required parameter.

End of Algorithm

Cover Sheet Definitions:

Airport - Name of the current airport.
Period - The start and end time of the program (user input on the setup panel).
Report Time - Current clock time when this program is run (ddhhmmZZ)
Last Update Time - The time of the ADL (mm/dd/yyyy hh:mmZ).
Arrival Fix - The included arrival fix.
Aircraft Type - The included aircraft type (“All”/”Jet Only”/”Prop Only”).
Carrier - The included major carrier.
Now+ (min) - Flights departing before current time plus this value are exempted.
Delay Adjustment (min) - User input for adjusting delays of included flights.
Facilities Involved - The departing centers and airports not exempted.
Dep. Airport(s) Exempted - The departing airports specifically exempted.
Specific Flts Exempted - The flights (in ACID) specifically exempted.
#Total/Affected Flts - Total number of flights that are included in this operation, and number of
flights that are affected (moved) by this operation.

The following statistics shows the result of this operation. “Before” column shows the
statistics before this operation; “After” column shows the statistics after this operation;
and ‘Difference” column shows the difference between the before and after statistics.

Total Delay –The sum of positive ATC delay for those affected flights
Max Delay - The maximum positive ATC delay of those affected flights
Min Delay - The minimum positive ATC delay of those affected flights
Avg Delay – Calculated from Total Delay divided by Number of Affected Flights

9 See “C.5.5 Remove Small CTD Change Process” documentation in Compression Algorithm

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 241
Document Version 13

C.5.7 Ground Stop Algorithm

Note: that the “program” in the following text refers to “Ground Stop” program.
Ground Stop is only applicable to airport elements.

This function requires the following input parameters:

a) One or more Ground Stop Statements, each contains the following parameters:
1) Start time = t0.
2) End time = t1.
3) Involved facilities – centers and/or airports
Note that the current panel selection is the first Ground Stop Statement.

b) Included AFIX.
c) Included Aircraft Type.
d) Included Major Carrier.
e) Target AAR (for each 15 minutes time period).
f) Plus_Time in minutes indicate how many minutes within the data time should be used for

departure exemption.
g) Specific flights exemption.
h) Specific airports exemption.
i) Schedule status and user category exemption.
j) Data Time.
k) Option of Immediate/Future Ground Stop is intended. Note that the difference lies in the

default setting of above parameters.

STEP 0 – If there is an actual GS program in the dataset and no actual GDP, purge previously

controlled flights that are outside the current program scope. See documentation in
Appendix A for details.

STEP 1 – Put all the input Ground Stop Statements into a statement-queue, sort the queue by t1

(End Time) of the Ground Stop Statement

STEP 2 – Process each flight record in the system

 Loop 1 – for each flight in the system

a) Determine if the flight is included, it is included if
1) It is not canceled. And
2) Its AFIX, Aircraft type, and Major Carrier fit specified criteria

b) Move on to the next flight if this flight is not included (back to (a)), otherwise do Loop

2.

Loop 2 - For each Ground Stop Statement in the statement-queue.

Further check this flight against inclusion and exemption criteria specified in this
particular ground stop statement.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 242
Document Version 13

• The flight is excluded from this ground stop statement if its ETD is not within

the specified time frame (between t0 and t1).
• The flight is exempted from the this ground stop statement if it is:

v) Specific source airport (input item (a.3)).
w) Departure time.

If CTD is valid, Set t = CTD;
Else Set t = Wheel_Departure_Time;
The flight is exempted when t is less than (earlier than) Data Time
(input item (j)) + Plus_Time (input item (f)).

x) Specific flight (input item (g)).
y) Source facilities (input item (a.3)).
z) Schedule status and user category (input item (i)).
aa) Schedule-Arrival – If a flight is scheduled to arrive before the t0, but is

delayed into the Ground Stop time frame, this flight should be exempted to
avoid double penalty. Wheel_Arrival_Time is used as the scheduled arrival
time if the flight is not controlled, CTA is used otherwise.

IF the flight is not excluded nor exempted
• Set new_ETD = (t1+1min). (Note that because the ground stop statements are

sorted by its t1 (STEP 1), the flight will always get the latest new_ETD if more
than one statement includes this flight).

• Put the not-exempted flight in a flight-queue.

End IF

End Loop 2
End Loop 1

STEP 3 – Assign CTA/ETA to the flights that was added to the flight-queue in STEP 2.

Loop 3 – for each flight in the flight_queue
a) Set new CTA = new_ETD + ETE
b) If new CTA is greater than ADL end time, set new CTA = ADL end time.
c) Set CTA = ETA = new CTA.
d) Set ETD = new_ETD
e) IF the flight is not controlled, Set CTD = new_ETD

ELSE IF the flight is notactive, set CTD = new_ETD
f) Modify the slot ID based on CTA

End Loop 3

End of Algorithm

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 243
Document Version 13

Cover Sheet Definitions:

Airport - Name of the current airport.
Period - The start and end time of the program (user input on the setup panel).
Report Time - Current clock time when this program is run (ddhhmmZZ)
Exempt By – Flights are exempted by status or by time.
Last Update Time - The time of the ADL (mm/dd/yyyy hh:mmZ).
Arrival Fix - The included arrival fix.
Aircraft Type - The included aircraft type (“All”/”Jet Only”/”Prop Only”).
Carrier - The included major carrier.
Now+ (min) - Flights departing before current time plus this value are exempted if “Exempt By”
Time..
Facilities Involved - The departing centers and airports not exempted.
Dep. Airport(s) Exempted - The departing airports specifically exempted.
Specific Flts Exempted - The flights (in ACID) specifically exempted.
Late Start/Variable Release – Up to four Ground Stop Statements can be entered by user and be
displayed.
#Total/Affected Flts - Total number of flights that are included in this operation, and number of
flights that are affected (moved) by this operation.

The following statistics shows the result of this operation, “Before” column shows the
statistics before this operation, “After” column shows the statistics after this operation,
and ‘Difference” column shows the difference between the before and after statistics.

Total Delay –The sum of positive ATC delay for those affected flights
Max Delay - The maximum positive ATC delay of those affected flights
Min Delay - The minimum positive ATC delay of those affected flights
Avg Delay – Calculated from Total Delay divided by Number of Affected Flights

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 244
Document Version 13

C.5.7.1 Purge Flight Outside Scope
This section describes the process that previously controlled flights will be purged if they are
outside the current program scope, formerly known as “Reduce Ground Stop Scope”. Details
can be found in ref [6]. Here the implemented procedure will be presented.

STEP 1. Check the GS param flag in the dataset. If the GS param flag is not ACTUAL, stop

process and return.

STEP 2. Check the GDP param flag in the dataset. If the GDP param flag is ACTUAL, stop

process and return.

STEP 3. Based on user input (input item a), create a list of included centers. Similarly, create a

list of included airports.

STEP 4. Based on user input (input item h), create a list of exempted airports.

STEP 5. Create a flight queue, called “To_Be_Purged_Q”.

STEP 6. Run the following loop:

For each controlled arrival flight (flt) in the dataset

• If the flight is active or if the control element of the flight is not equal to the element of the
dataset, go to the top of the loop for the next flight.

• If ORIG of flt is in “included airports”, go to the top of the loop for the next flight.
• If the DCENTER of flt is in “included centers” and ORIG of flt is not in “exempted

airports”, go to the top of the loop for the next flight.
• Put flt in the “To_Be_Purged_Q” queue.

End of For loop.

 STEP 7. Pass the To_Be_Purged_Q to the FSM Purge Algorithm process (See FSM Purge

Algorithm documentation for details).

End of process.

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 245
Document Version 13

C.5.8 Purge Algorithm

The Purge Algorithm is used by FSM to model the cancellation of a Traffic Management
Initiative. The Purge operation can be performed on an actual GDP or GS for an airport
or on an actual AFP for a FCA. In each case, controlled flights with the control element
that is the same as the control element of the dataset are purged. This document
describes the Purge algorithm implemented in FSM 8.2 to model the effect of the “EDCT
PURGE” ETMS command.
Configurable constants used in the algorithm:

a. GDP_CNX_NOW_PLUS. This is minimum notification time for flights in a GDP or
AFP. (Currently set at 45 minutes)

b. GS_CNX_NOW_PLUS. This is the minimum notification time for flights in a GS.
(Currently set at 20 minutes)

c. TAXI_FLIGHT_NOW_PLUS. This is the minimum notification time for controlled
flights in taxi status. (Currently set at 20 minutes)

Flights excluded by control element from purge:
A controlled flight in the ADL is excluded from the purge operation if the control
element of the flight is not the same as the control element of the ADL. This includes
flights controlled by another AFP or GDP of a different control element.

Calculation of the minimum_notification_time of a controlled flight:

a. If a controlled flight is in taxi status, without regard to the type of control, then the
minimum notification time shall be set to the value of TAXI_FLIGHT_NOW_PLUS.
i. A flight is in taxi status when it has an off-the-gate time set (OUT) and

ii. The off-the-gate time (OUT) is equal to or later than the predicted gate departure time
(LGTD). This is to detect flights that have returned to the gate.

b. If the control type (CTL_TYPE) is ground stop, then the minimum notification time shall
be set to the value of GS_CNX_NOW_PLUS.

c. If the control type (CTL_TYPE) is anything but ground stop, then the minimum
notification time shall be set to the value of GDP_CNX_NOW_PLUS.

Purge included flights:

a. If the flight is active or completed,
i. Do not purge [ETD should already be set = ARTD]

b. Else if CTD is <= (now + minimum_notification_time),

i. Do not change ETD/ETA or ENTRY (for AFP),
ii. Remove [replace with nulls] control times (CTD, CTA, CTL ELEM, etc.)

c. Else if CTD is > (now + minimum_notification_time),

i. Set a use_time to the first available of:
1. ERTD

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 246
Document Version 13

2. (ERTA - ETE) [where ETE = ETA - ETD] (for airport GDP) or (EENTRY –
FCA_ETE) [where FCA_ETE = ENTRY – ETD] (for AFP).

3. OETD
4. (IGTD + taxi_out_time) [taxi_out_time is configurable and currently set at 10

minutes]
ii. If use_time is > (now + minimum_notification_time),

1. Set ETD = use_time
iii. Else if use_time is <= (now + minimum_notification_time),

1. Set ETD = (now + minimum_notification_time)
iv. Set ETA = ETD + ETE (for airport GDP) or set ENTRY = ETD + FCA_ETE (for

AFP)
v. Remove [replace with nulls] control times (CTD, CTA, CTL ELEM, etc.)

~End of the description~

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 247
Document Version 13

C.6 Airborne Holding Algorithm
Input Parameters:

d. Airport dataset. The Airport object that the algorithm will be applied to.
e. Data Time = dt.
f. Start Time = t0.
g. End Time = t1.
h. Program Rate values (for each 15 minutes time period).
i. Pop-Up Factor values (for each 15 minutes time period).
j. Time field to be used. (BY_ETA, BY_BETA, BY_WHEEL_AZ, BY_OCTA,

BY_CTA, BY_EAFT)

Operations performed on flights of the target airport:
STEP 1. Find all arrival flights included in the program (included flight queue):

For each arrival flight,
1) Derive used time based on input parameter h. Denote the time as used_tm.
2) Check if the flight is included in the program. A flight is included in the program

if its used_tm is in [t0, t1] and it is not a cancelled flight.
3) Put all included flights into the included flight queue.
4) Set ETA of the flights to the used_tm.
5) Sort the flights in the included flight queue according to their used_tm in

ascending order.

STEP 2. Assign slot time to the flights in the included flight queue.

o Find the first flight in the included flight queue.
o Set the last_time to the ETA of the first flight.
o Set the slot time of the first flight to the last_time.
o For each flight remaining in the included flight queue:

i. Find the step size (interval between flights) according to last_time and the
effective Program Rate in the time interval (Program Rate – Pop-Up Factor
for the 15 minute period).

ii. Update last time using the step size (i.e. Increase last time by step size).
iii. Let the ETA of the current flight be curr_eta.
iv. If curr_eta <= last_time, set the slot time of the flight to last_time.
v. If curr_eta > last_time, set last_time to curr_eta and set the slot time of the

flight to last_time.
vi. Go to step I for the next flight in the queue.

~End of the description~

31F0607-009-R0 Appendix C -- FSM Algorithms

ETMS Functional Description, Version 8.4 248
Document Version 13

C.7 References
1. Aggregate Demand List (ADL) / FSM Broadcast Data Formats - Version 11 Revision 4,

Ken Howard and Miro Lehky, September 12, 2006.

2. FSM Algorithm Updates SysReq Ver 1.5 for FSM 8.3, Miro Lehky, May 15, 2006.

3. FSM GDP Process Enhancements SysReq v1 7.doc for FSM 8.4, Miro Lehky, Jan. 25,
2007.

4. Diversion Recovery Memo 2005.09.13.doc for FSM 8.2, Miro Lehky, September 13,
2005.

5. Diversion Processing Logic Update-Final.doc for FSM 8.2, Miro Lehky, December 6,
2005.

6. FSM GDP Process Enhancements SysReq v1 3.doc for FSM 8.3, Miro Lehky, July 5,
2006.

