memorandum

[image: image1.png]
to:
CDM, GDPE
from:
Michael Brennan, Christopher Ermatinger
subject:
Principles of Adaptive Compression for Ground Delay Programs
date:
NOVEMBER 11, 2004
Principles of Adaptive Compression for Ground Delay Programs
1. Introduction
A major goal of Collaborative Traffic Flow Management (CTFM) is to make maximal use of all available capacity especially when there is excess demand. In the case of Ground Delay Programs (GDPs), this capacity takes the form of arrival slots or assigned arrival times. Proper use of this capacity is the key to minimizing delay in GDPs.

Few flights arrive exactly at their assigned time. However, as long as there is a balance between early arriving flights and late arrivals and the average deviation from the assigned arrival time is small, GDPs can run fairly efficiently. But when significantly more flights arrive late than arrive early, arrival capacity in the initial portion of the GDP is wasted, and excessive airborne holding later in the program can be generated. Despite continuing improvement in the execution of GDPs, this remains a very common situation in today’s GDPs. The most conspicuous result of this late drift is the delivery of fewer actual arrivals than allocated during a specific time period; i.e. program under-delivery. By reducing the number of wasted and missed arrival slots and smoothing the actual arrivals of flights at GDP airports, we can reduce both ground delay and airborne holding.

There are a number of causes of missed arrival slots
a. Flights are cancelled by CDM members and not moved to the end of the program,
b. Flights are cancelled by non-CDM members,
c. Flights miss their controlled departure times, and
d. Flights have longer en route times than expected.
Much of the wasted capacity could be recovered by running the compression procedures more frequently, but this would add to the workload of the specialists managing the programs and would create a less predictable, less stable environment for the NAS users. Consequently, it is time to consider a strategy for orderly, automated compression as an alternative to manual compression. This orderly, automated compression could take one of two basic forms.

One form would be a system-wide global compression, in which all vacant slots are moved back at the same time, either at regular intervals or triggered when the projected wasted capacity would exceed some threshold. This form would require a cycle in which users are warned, substitution is turned off, the compression is run, and substitution is turned back on. However, this would be a source of considerable disruption to the operators, and could still leave many slots unfilled.
A second form of automated compression would involve a series of small, ‘just-in-time’ adjustments to the current flight list, as the system smoothly adapts to changing conditions. In this approach the system would
a. identify vacant slots that are on the verge of being unusable by other flights, and

b. move these slots back to a time later in the program thereby reducing the delay on other flights.

This strategy is called Adaptive Compression (AC), as it provides a mechanism for GDPs to continually adapt as the conditions change. This strategy is described in this paper.
While various approaches to automated compression have been considered since the early days of GDPs, a number of recent developments have created a favorable environment for this approach now

· Slot Credit Substitution (SCS) procedures have shown airlines that having their flights moved earlier through bridging is to their net advantage

· SCS has shown the ATCSCC that the increased demand created through fewer lost slots can be managed
· EDCT Change Request procedures have shown the advantage of using missed EDCTs for some flights to reducing delay on others
· Prototype software for Popup Management procedures has provided a means to recognize when open slots are about to go to waste.

The sections below lay out some of the details of the how Adaptive Compression can be implemented.

This implementation involves several configurable parameters, designated as P1, P2, … A description and suggested values of these parameters are given in the text and in a table at the end of the paper.
2. Identifying Compression Candidates
With the receipt of each new airport Aggregate Demand List (ADL), the system will look for compression opportunities. In particular, the program will identify

1. Flights in time-out delay. These are flights for which no ARTD has been received and have an ETD earlier than the ADL time. Only flights with a time-out delay and a difference between its ETA and CTA of length P1 (15 minutes)will be considered. International flights, for which no ARTD is expected, will not be considered for this case.
2. Flights that have departed after their CTD and have a difference between their ETA and CTA of P2 (10 minutes).
3. Flights that have been user delayed. Delay is defined as the minimum of ERTA - CTA, PGTA - taxi - CTA, and LRTA – CTA, if these fields are present. (Note: These criteria are open to discussion). If the delay is at least P2 the flight will provide a compression opportunity. These flights will be identified as Type 3a flights, belonging to substituting users (CDM participants) or as Type 3b flights, belonging to non-substituting users (non-CDM participants). Type 3b flights will be moved back as soon as they are identified.
3a.
Additional rules are applied to Type 3a flights to avoid interfering with substitution plans. For 3a flights, a candidate SCS operation is modeled for the flight with values of t0 = current CTA, t1 = airline arrival time (ERTA, PGTA - taxi, or LRTA), and t2 = t1+P4 and with the minimum notification increased by P5 minutes. If the SCS attempt would fail the flight is a compression candidate. If the SCS attempt would succeed the flight is not a compression candidate. In either case the SCS is not implemented.

4. Flights that have been cancelled. These flights will have rules applied to avoid interfering with substitution plans. A candidate SCS operation is attempted on the flight with values of t0 = current CTA, t1 = t0 + P6 , and t2 = t1 + P4, and with the minimum notification increased by P5 minutes. If the SCS attempt would fail, the flight is a compression candidate. Conversely, if the SCS attempt would succeed, the flight is not a compression candidate. In either case, the SCS is not implemented
Once ETA predictions from ETMS are more stable a fifth
5. Airborne flights that have ETAs later than their CTAs, due to en route delay or inaccurate flight plans. (These flights will only be considered for compression after further analysis, and the full logic for this class is not pursued here.)
All flights that fall into one of the above conditions will be considered as compression candidates. If a flight falls into more than one category the dominance rules for compression to apply is in the order 4, 2, 1, 3. For example, if a flight was user delayed (category 3) but has also departed after its CTA it will be treated as a category 2 flight.
3. Setting a Target CTA for a Slot

The next issue to be resolved after the system has identified a flight that is to be moved back is the time to which it is to be moved. This time depends on the category into which the flight falls.

Type 1, time-out delayed flights, will have a target arrival time will then be the ETA.
Type 2, flights that departed after their CTD, will have a target arrival time will then be the ETA.
Type 3a and 3b flights, user delayed, will have a target time of the user-specified delayed arrival time, or the user-specified delayed departure time plus the ETE.

Type 4 flights, cancelled, will have a target arrival time of their current ASLOT + P6.
Type 5 flights, delayed en route, will have a target time of their new ETA.
Mechanics of Moving a Slot Back

The objectives for moving a slot back for Adaptive Compression are very similar to the objectives of an SCS transaction but with one important distinction. An SCS request includes two time parameters, T1 and T2, which define a range of times. The objective of an SCS transaction is to place a flight in the earliest available slot with a time no earlier than T1. An SCS transaction is considered a success if such a slot can be found no later than T2.
An AC transaction has a slightly different objective. There is only one time parameter involved, the target CTA or TCTA. The objective of an AC transaction is to put the flight in the latest slot with a time no later than the TCTA. This ensures that (1) delayed flights are never given additional delay, (2) cancelled flights are moved as late as possible, and (3) when flows cannot be smoothed perfectly, the error is on the side of not overloading capacity. An AC transaction is considered a success if it can move the flight back.
Given the current freeze on any changes to hub site software until Fall of 2005, an implementation strategy that captures the bulk of the benefits without requiring hub site changes is proposed. This implementation strategy uses a special-purpose client to the FSM server that monitors the ADL, looks for AC opportunities, and sends an SCS request to ETMS to execute the adjustment. The details of this approach are provided in Appendix 1.
An alternative implementation strategy is to execute the algorithms within the hub site after the current software change freeze is lifted. This possible algorithm for executing an AC transaction is described in Appendix 2. To execute effectively, the algorithm has to know the current setting of the SCS-based ‘Bridging Subs Off’ status for each flight. For this reason, the algorithm should be implemented at the hub sight.

4. Implementation Considerations

The functions of this software share features of FSM, since it executes compression logic, the EDCT Request Tool (ECR) since it sends SS packets to ETMS, and the ETMS software at the hub site since it executes SCS-like bridging logic.
Unlike FSM and ECR, at any one time only one version of this software should be active and sending messages for any given arrival airport.

This logic could be implemented as an add-in to the FSM client, but not part of the generally distributed client, or as a separate client to the FSM server based on the core FSM components. (The JFSM architecture may make these options indistinguishable.)
Appendix 1: Bridging via Slot Credit Substitution Requests

As stated in Mechanics of Moving a Slot Back, the process of bridging for AC is similar to that of bridging for Slot Credit Substitution requests. The following description is a method in which one could design AC without hub-site changes. The method uses the same identification logic for AC candidates and sets the target CTA in the same manner.
A service to the FSM server at the ATCSCC would format a singleton SCS request via a SS Packet, much like the ECR requests currently used by the ATCSCC. The only eligible flights would be those that are not popup flights, not former popup flights, or ground stopped flights. The window size of the SCS request would be no less than 10 minutes and no more than 15 minutes with at least 30% of the window earlier than the target CTA and 70% of the window later than the target CTA.

As an example, suppose our window size was 10 minutes and our target CTA was 1800Z, the earliest acceptable time would be 1757Z and 1807Z. Splitting the window over the target CTA produces an affect of minimizing unnecessary delay to the compression candidate and increases the likelihood of a compliant departure.

The service would then calculate the likelihood of a successful request by applying the ETMS bridging logic to the potential SCS request. If the request succeeds the internal bridging test, then an actual SCS request will be sent to ETMS for processing, if the message fails an SCS request will not be sent.

Upon receipt of the return message from ETMS, we shall know if the SCS request was accepted or rejected. If the SCS request was accepted, the client shall record that an SCS request was accepted for that flight and ASLOT pair, and the client shall stop sending SCS requests for that particular flight and ASLOT pairing.

If the SCS request was rejected, the client shall record that an SCS request was rejected for that flight and ASLOT pair. If the client records two rejections for the same flight and ASLOT pair, then the client would stop sending SCS requests for that particular flight and ASLOT pairing.

Appendix 2: Adaptive Compression Bridging Algorithm

This appendix describes an algorithm for creating a set of bridges to move a flight (an open slot) back during adaptive compression.

Data required

T0 – the time of slot the open slot (the slot time of the flight to be moved back)
TCTA – the target slot time for the flight
current_time - time of current ADL

flight_list - list of all arrivals at airport

Parameters used (and nominal values)

taxi_time - nominal time between gate departure and runway departure (15 minutes)

notify_time - minimum duration between current time and a new departure time that can be given to a flight (30 minutes)

max_move - maximum desired time a flight should be moved up (30 minutes)

min_move – desired minimum time a flight should be moved up (10 minutes)

Create a list of flights that are possible bridging candidates
A flight is a bridging candidate if

1. It is controlled (has an ASLOT)

2. It is not a popup (control_type <> FA)

3. It is not Ground Stopped (control_type <> GS)

4. It is not cancelled

5. It is not already delayed past its controlled time of departure (ETD≤CTD)

6. It has an arrival slot after T0 and no later than TCTA
7. Its Bridging Flag is True (available for bridging)

Put these flights into a temporary array Flights(). The first element of the array should be the flight to be moved back. Each array element should have fields for

1. The index for the flight into the flight list

2. The slot time for the flight (.slot_time), initialized to the current slot time

3. The name of the slot held by the flight (.slot_name), initialized to the current slot name

4. The earliest ETA for the flight (.EETA), set below

5. The original index for the flight (.orig), set to 1 for the first flight.

6. A flag for whether the flight is used for bridging (.changed), initialized to false

Sort the array in ascending order of slot time.

Find the earliest ETA for each flight in the array

Set the EETA for each flight f. The EETA is the earliest time at which the flight could arrive.

There is a hierarchy of rules for establishing the EETA.

If the flight has an ERTA then

EETA = ERTA

Else if the flight has an LRTA then

EETA = LRTA

Else if the flight has an LGTA then

EETA = LGTA – taxi_time

Else if the flight has an IGTA then

EETA = IGTA – taxi_time

Else

EETA = ETA

The EETA can not give a flight an ETD earlier than the current time plus the minimum notification time, after considering its time on route.

EETA = max(EETA, current_time - (ETA-ETD) + notify_time)

Find a series of flights to move forward to move the target flight back
The algorithm below iteratively moves the target flight to later slot times until it reaches the last available slot no later than TCTA. If on any iteration it fails to find a bridge it terminates.

The variables used are

cur_flight – current index into the array for the flight being moved back
best_flight - the index into the array for the best bridging flight found for this iteration

f - the index into the array for the flight being considered as a bridging candidate
temp_flight - temporary variable of the same type as the elements of the flight array, used for swapping flights

nFlights is the number of flights in the temporary array created above

Initialize the index for the target flight to 1

cur_flight = 1

Iterate until the target flight is at TCTA or the bridging fails

Do

Initialize the best flight found on this iteration to 0

 best_flight = 0

Consider each flight with a slot time later than the flight being moved back (the array is sorted by slot time)

 For f = cur_flight + 1 To nFlights

If the slot time for the considered flight is more than max_move after the current slot for the flight being moved back, then that flight and all others in the array would exceed the max_move constraint for this swap. So if we have found a flight to swap, and the move-up time for the flight is no less than the minimum move-up time, then it is the best one for this iteration. If we have not found a flight to swap that does not violate the minimum move-up time then continue looking at later flights.

 If best_flight ≠ 0 and
 (flight(best_flight).slot_time - flight(cur_flight).slot_time ≥ min_move) and
 (flight(f).slot_time - flight(cur_flight).slot_time > max_move) Then Exit For

If the slot time for the best flight is the target CTA then we have completed the bridge.

 If flight(best_flight).slot_time = TCTA Then Exit For

If the current slot time for the target flight is no earlier than the earliest ETA for the flight being considered then it is a possible bridging candidate.

 If flight(f).EETA <= flight(cur_flight).slot_time Then

If this is the first possible bridge found on this iteration then it is the best bridge yet found.

 If best_flight = 0 Then

 best_flight = f

 Else

If this swap puts the target flight at the target CTA then it is the best bridge

 If flight(f).slot_time = TCTA then best_flight = f

 Next f

At this point we have either failed to find a bridge (best_flight=0) or found the best swap.

 If best_flight = 0 Then Exit Loop
Here we swap the positions in the array for cur_flight and best_flight, and swap their slots and slot times to reflect the move

 temp_flight = flight(cur_flight)

 flight(cur_flight) = flight(best_flight)

 flight(best_flight) = temp_flight

 flight(best_flight).slot_time = flight(cur_flight). slot_time

 flight(best_flight).slotname = flight(cur_flight).slotname

 flight(cur_flight). slot_time = temp_flight. slot_time

 flight(cur_flight).slotname = temp_flight.slotname

Mark each of the two flights in the swap as having been changed.

 flight(cur_flight).changed = True

 flight(best_flight).changed = True

Set the index for the target flight to the location to which it was moved.

 cur_flight = best_flight

Loop until the current iteration fails to move the target flight, which is flagged above when best_flight=0.
Loop

If we have exited the loop with best_flight set to 0 then the bridge failed.

If best_flight = 0 Then

 feasible = False

Else

 feasible = True

End If

Apply the changes to ADL

If any changes were made to flights in the loop above then they must be applied to the ADL. An SS packet which includes all of the flights with .changed set to true is created assigning each such flight to its new slot in .slotname. This packet is then sent to ETMS.
Appendix 3: Configurable Parameters

	Designation
	Description
	Nominal Value

	P1
	Length of time-out-delay before flight is compressed
	15 minutes

	P2
	Minimum length of late departure before flights is compressed
	10 minutes

	P4
	Length of SCS window for SCS exchanges to be considered
	20 minutes

	P5
	Minutes into the future that a potential SCS exchange would be attempted
	20 minutes

	P6
	Minutes into the future a canceled slot would be moved.
	90 minutes

DCN

