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Abstract

During instances of capacity-demand imbalances, efficient plan-
ning and decision-making in air traffic low management is contingent
upon the “goodness” of the capacity distributions that estimate air-
port capacity over time. Airport capacities are subject to substantial
uncertainty as they depend on stochastic weather conditions. In this
paper, we develop models that take into consideration the stochastic
nature of weather. The main objective of this paper is the develop-
ment of probabilistic capacity forecasts. To assess the improvements
that could be gained by using the capacity probabilistic forecasts, the
capacity distributions developed in this paper are input into existing
static, stochastic, ground holding models, which uses probabilistic ca-
pacity forecasts and determines the amount of ground delay to assign
to incoming flights.



1 Introduction

When an airport’s arrival and/or departure capacity is reduced during “peak
demand periods”, demand for an airport’s resources exceeds the capacity at
which the airport can accept this demand. This is known as a capacity-
demand imbalance. Demand refers to the number of flights scheduled to
arrive or depart in a given time period (rate of flight arrivals or departures),
whereas capacity is the maximum number of flight arrivals or departures
per unit time. To address and manage this imbalance, traffic flow managers
at the Federal Aviation Administration’s (FAA) Air Traffic Control Systems
Command Center (ATCSCC), also known as the Command Center, may in-
stitute a ground holding procedure known as a ground delay program (GDP).
During a GDP, flights are assigned delay to be taken on the ground at their
departure airports until a time when they can safely arrive at their destina-
tion airports with little to no airborne delay.

Weather conditions at an airport determine which runway configurations
and landing procedures are used. The combination of the runway configu-
rations and the landing procedures determines an airport’s acceptance rate
(AAR) or operational capacity. There are 2 major types of landing proce-
dures: Instrument Flight Rules (IFR) and Visual Flight Rules (VFR). Under
VFR conditions at San Francisco’s International Airport (SFO), aircraft nor-
mally arrive from the northwest in dual side-by-side approaches on runways
28L and 28R. See Figure 1 for the runway layout at SFO. When IFR condi-
tions exist, the AAR is reduced because the landing of aircraft in pairs on the
two closely spaced parallel runways is considered unsafe. Table 1 lists the ca-
pacities or AARs for the various combinations of runway configurations and
landing procedures at SFO. VAPS is an acronym for visual approaches and
has the same conditions as VFR with the addition of a ceiling that exceeds
3500 feet and a visibility that exceeds 7 miles at the San Mateo Bridge for
SFO.

ftbpFU5.6991in2.7821in0ptRunway Layout at San Francisco’s Interna-
tional Airport (Courtesy of the ATCSCC)sfo.bmpSince there is a direct re-
lationship between weather conditions and an airport’s acceptance rate or
capacity through its runway configurations and landing procedures, accurate
forecasts of weather conditions are crucial for an “good” estimation of airport
capacity or AARs.

Overall airport capacity is comprised of two interdependent capacities,
the arrival capacity and the departure capacity. The determination of an



Land Depart IFR | VFR | VAPS

28L 28R 1L 1R 30 45 60 (daylight); 50 (non-daylight)
28L 28R 28L 28R 30 45 45
28L or 28R | 1L 1R 30 N/A |30
28L 28R 1L or 1R 30 45 45
1L 1R 1L 1R 30 N/A |30

19L 19R 10L 19R 27-30 | N/A | 45

19L 19R 19L 19R 25-30 | N/A | 42

19L or 19R | 10L 10R 27-30 | N/A | 30

19L 19R 10L or 10R | 27-30 | N/A | 45

10L 10R 10L 10R 27-30 | N/A | 37

Any Single | Runway 27 N/A |27

Table 1: AAR Chart for SFO (Courtesy of ATCSCC)

airport’s overall capacity is a difficult task because weather conditions, run-
way configurations, arrival/departure ratios and the fleet (aircraft type) mix
must all be considered. Eugene Gilbo, from the Volpe Transportation Sys-
tems Center, proposes methods in [8] and [9] for optimizing overall airport
capacity by considering the complex relationship between arrival and de-
parture capacities through an arrival/departure capacity curve. Hall [11]
expands Gilbo’s work by developing collaborative methods for allocating ar-
rival and departure capacities. Though it is recognized that additional effi-
ciencies can potentially be gained by considering both arrival and departure
capacities simultaneously, arrival capacities and estimating arrival capacity
distributions for a GDP will be the focus of this paper.

2 Background

Over the past several years, a new, collaborative process was conceived and
implemented (January 1998) to enhance the decision-making processes in air
traffic flow management. This new process, which is known as Collabora-
tive Decision Making (CDM), was motivated by a need to combine infor-
mation sources for increased information sharing and distributed decision-
making. Prior to CDM, there existed a central planning paradigm in which
the FAA’s ATCSCC was viewed as a central planning authority that made
decisions with little input from the airlines and their operational control cen-



ters (AOCs). Since the inception of CDM, there is a collaborative paradigm
in which the airlines and AOCs have more control, flexibility and input into
the air traffic low management decision-making processes. Under CDM,
GDPs have become more effective due to increased information exchange,
more efficient tools and common situational awareness.

During a GDP under CDM (known as GDP-Enhancements or GDP-E),
the ATCSCC sends out an advisory to the AOCs stating its intention to in-
stitute a GDP. Airlines then respond with any flight cancellations or delays.
If there is still a need for a GDP, the ATCSCC assigns arrival slots to airlines
based on their scheduled times of arrival. This process is known as Ration by
Schedule (RBS). Each airline then has the option to redistribute its flights
among the slots it has been assigned using the substitution process. Each
airline may also cancel or delay additional flights. These changes are then
submitted to the ATCSCC. If there are any unused slots (due to delays or
cancellations), an algorithm known as the Compression Algorithm is used for
inter-airline slot swapping. (For more detailed information on CDM proce-
dures, see [6], [14], and [22]). CDM has made a significant positive impact
on decision-making processes during GDPs. As of October 1999, there is a
savings of over 4 million delay minutes due to the CDM procedure Compres-
sion. For more information on other benefits derived from CDM, see [4] and
the Free Flight Phase 1 (FFP1) Report [15].

A crucial aspect of the whole GDP-E process is determining the number
of arrival slots per unit time. Determining the number of arrival slots or the
amount of ground delay to assign to flights is known as the ground holding
problem (GHP). Previous work have been done on the deterministic GHP
([5], [18]) and the stochastic GHP ([2], [3], [5], [10], [11], [13], [19], and
20],[21]). For the deterministic GHP, an airport’s capacity is generated by
the ATCSCC at the beginning of the day and is assumed to remain constant.
This version of the GHP does not take into consideration the stochastic
nature of weather. In the stochastic GHP, changing weather conditions are
considered through the probabilistic forecasting of airport capacity or AAR.
In this paper, we consider the problem of deriving probabilistic forecasts for
the stochastic GHP.

We will focus on deriving probabilistic forecasts of arrival capacity for
the Hoffman-Rifkin static stochastic ground holding model. The Hoffman-
Rifkin model ([5], [13], [21]) was developed to be used in conjuction with
CDM procedures, though it has not been adopted and is not currently being
used by the ATCSCC. The model is formulated as an integer programming
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problem and solved in polynomial time using linear programming (LP) re-
laxation techniques (since the model is a dual network flow problem). The
inputs to the model are demand, which is assumed to be deterministic, the
ground holding and airborne holding costs per flight, and the arrival capacity
scenarios, which is the distribution of the AAR over time. Recall that AAR
is the maximum number of flights that can be landed in a given unit of time.
The output of the model is the planned airport acceptance rate (PAAR) or
the number of flights assigned arrival times in each time interval. We can
think of the output as the number of arrival slots per unit time. This model
deals with flights in the aggregate and CDM procedures determine the slot as-
signments of individual flights. See the CDM GDP-E Concept of Operations
diagram (Figure 2) ftpFU4.7478in5.8972in0ptProposed GDP-E Concept of
Operationsconops.wmffor a graphical view of planning procedures during a
GDP-E. The main contributions of this paper are the development of prob-
abilistic capacity forecasts, which contain capacity scenarios needed by the
Hoffman-Rifkin static stochastic GHP, and the modification of the Hoffman-
Rifkin model to realistically represent dynamic changes in GDPs. In the
next sections, we describe capacity scenarios and then derive probabilistic
distributions of capacity scenarios.

3 Airport Arrival Capacity Scenarios

3.1 Conceptual Representation of Arrival Capacity Sce-
narios

On any given day, there is a weather forecast that translates into a particular
capacity. As the weather (forecast) changes, so does the capacity. The
severity of the weather and the accuracy of the forecast determine the amount
of fluctuation in the capacity level. It is a normal practice for specialists at the
ATCSCC to receive different weather forecasts from various sources. Each
of these forecasts could realistically result in a different capacity scenario
or arrival capacity distribution (ACD). The strength of the forecast could
possibly determine the probability of a particular ACD.

We now describe, on a conceptual level, a range of possible ACD models.
For modeling convenience, time is broken into discrete intervals, e.g. typical
lengths are one-hour or 15-minute intervals. An ACD can be represented as a
bar graph, where the x-axis represents time of day, y-axis represents arrival



capacity levels or number of flights able to land, and each bar represents
arrival capacity over a given time interval.

In general, an ACD can take almost any structure imaginable. Thus
the number of possible ACDs is enormous. In this section, we explore pos-
sible ACD structures. In the most general ACD model, there can be a
constant fluctuation in the arrival capacity level, as seen in Figure 3. We
shall refer to this as the “general” ACD because it can be used to model
almost any given airport that may be plagued with constant weather or run-
way configuration changes.fthpFU286.25pt177.875pt0ptForm of the General
Arrival Capacity DistributionFigure A simpler model allows for only 2 ca-
pacity levels and the distribution fluctuates between these 2 levels. This
type of model may adequately represent conditions at an airport with few
runway configurations or with one main weather pattern that has multi-
ple peaks throughout the day. This will be known as the “2-Level” ACD
(Figure 4).ftbpFU253.125pt125.125pt0ptForm of the 2-Level Arrival Capac-
ity DistributionFigure A further simplification of the 2-Level ACD model
has a structure in which there is “normal” or maximum capacity at the
beginning of the day, then reduced capacity for a certain length of time,
followed by a return to the “normal” level. This model may capture most
airports in which there is a consistent weather pattern that occurs some-
time after sunrise and only lasts for a finite length of time. This ACD is
appropriate for most airports whose arrival capacity level is cut almost in
half when inclement weather forces a change from VFR to IFR approaches
eliminating the possibility of closely spaced parallel approaches. In this case,
we need only estimate the two parameters: start time and duration of re-
duced capacity. Thus, this is referred to as the “2-Parameter” ACD (Fig-
ure 5). ftbhpFU244.125pt120.625pt0ptForm of 2-Parameter Arrival Capacity
DistributionFigure The simplest ACD is a distribution that initially has re-
duced capacity, remains constant at this level for a given time and then
increases to the normal arrival capacity level. Therefore, the only param-
eter to be estimated is the end time (duration) of the reduced capacity.
Hence, this ACD model is the “1-Parameter” ACD (Figure 6). This is a
reasonable way to model ACDs associated with weather patterns that are
present at sunrise, remain continuously in place for a period of time and
then clear.ftbpFU254.625pt133.4375pt0ptForm of 1-Parameter Arrival Ca-
pacity DistributionFigure In general, the task of estimating a vector of ACDs
is quite daunting because of the possible model complexity of an individual
(general) ACD. There is a range of model complexities, which can be seen
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in the ACD models presented here. It was discovered that the structure
of the two simplest models, the 2-Parameter and 1-Parameter ACDs, are
representative of actual capacity scenarios for a reasonably broad range of
airports. In fact, the 1-Parameter ACD can be applied in one very important
and practical case. It can be used to model morning fog at San Francisco’s
International Airport (SFO). This case of modeling morning fog at SFO is
the focus of this paper.

3.2 Estimating 1-Parameter Capacity Scenarios for SFO

In the case of early morning GDPs at SFO, morning fog exists at sunrise forc-
ing IFR approaches and a planned AAR of approximately 30 flights per hour,
as depicted in the top graph of Figure 7. When the fog burns off, the arrival
capacity level returns to the “normal” value of 45 flights per hour (when vi-
sual approaches can be performed, See Table 1).ftpFU5.8807in3.2923in0ptIFR
Capacity at SFO (Reproduced with Permission from MIT’s Lincoln Labora-
tory)ifr2.wmfNominal IFR conditions at SFO are characterized by a ceiling
of less than 2500 feet or a visibility of less than 3 miles. Since fog con-
ditions are present at sunrise, the start of reduced capacity is at sunrise.
To estimate the duration of reduced capacity, the duration of a GDP and
the duration of IFR conditions given a GDP is planned will be calculated.
Morning GDPs at SFO are planned to end at the burnoff time of fog or
at the initial dissipation of the stratus conditions.! According to [10], stra-
tus clouds form during overnight hours and dissipate during the morning
hours. There are times when the dissipation or burnoff of the “cloudiness”
occurs after the late morning arrival traffic peak (1800Z)? in which demand
is high. During these times, there exists a capacity-demand imbalance due to
fog. ftbpFU396.9375pt189.125pt0ptPercentage of GDPs Implemented Dur-
ing Morning Hours at SFOMorning GDPs at SFO were analyzed to ascertain
the benefits of calibrating the models based on this set of data. The analysis
is performed on GDP data from GDP logs from the ATCSCC for the years
1995, 1996, and 1997 at SFO. The GDP logs from the ATCSCC contain in-
formation on GDP parameters such as start time of the GDP, end time of the
GDP, cancellation time of the GDP, AAR for the GDP, center(s) included

'From an e-mail correspondence with Forrest Terral at the ATCSCC on June 15, 1999.

218007 refers to 1800 hours in Zulu time; at SFO, 10am PST. Zulu Time is also called
Greenwich Mean Time (GMT) or universal time (UTC) and is based on the time at the
zero degree meridian in Greenwich, England.




in the GDP and the maximum delay incurred during the GDP. In order to
determine the duration of a GDP, we calculated cancellation time minus the
start time for all morning GDPs during 1995, 1996, 1997. In Figure 8, we ob-
serve that more than 50% of the GDPs planned and implemented at SFO for
any given month in any given year occur during the morning hours (1600Z-
1900Z). Thus, restricting attention to morning GDPs at SFO is reasonable.
Since fog materializes during times of low demand, weather data can be used
to give an estimate of the duration of IFR conditions regardless of demand.

GDP durations on days when GDPs were planned and durations of nom-
inal [FR conditions can be used for estimates of the durations of reduced
capacity in 1-Parameter ACDs. Thus, there are two sources of data that can
be used to estimate 1-Parameter ACDs for SFO. Since the Hoffman-Rifkin
static, stochastic ground holding model requires a vector of ACDs, the vector
will be determined by estimating a distribution of 1-Parameter ACDs.

3.3 Determining Distribution of 1-Parameter Capacity
Scenarios

Our goal is to determine a distribution that is an estimate of the duration
of IFR conditions during instances of capacity-demand imbalances for which
a GDP will be implemented. In general, a distribution can be determined
by binning a given set of observations or empirical data to create a relative
frequency histogram. A frequency histogram is constructed by partition-
ing the range of observed values (largest value minus smallest value) into k
equal length subintervals (bases of rectangles or bins) and by calculating the
frequency (counts) of observations in each subinterval (heights of rectangles
or bins). To construct a relative frequency histogram, simply divide the fre-
quency in bin i, f;, by the total number of data points, n. A relative frequency
histogram estimates an underlying probability distribution function (pdf) be-
cause > f;/n = 1. The 3 years of empirical GDP data from SFO are used to

create éhe frequency histogram of duration of morning GDPs (Figure 9). This
histogram is determined by considering the duration of GDPs conditioned on
a GDP being planned.ftbpFU453.875pt222.9375pt0ptOverall Frequency His-
togram for SFO Morning GDP Data Figure ftpFU445.5pt222.125pt0ptSmoothed
Histogram for SFO Morning GDP DataFigure

Notice the peak between 4 and 5 hours in Figure 9. In the opinion of
specialists, this is due to the operational procedures at the ATCSCC during



the given 3 years of data. There was a limit on the maximum number of
hours a GDP could be run and that limit was 4 hours. To remove the effect
of operational procedures on the overall distribution, a smoothing technique
that smooth out peaks and valleys in a histogram is utilized. In this trian-
gular binning technique, half of the number of data points in a given bin is
added to one-quarter the number of data points in the bin on the (immedi-
ate) left side of the given bin and one-quarter the number in the bin on its
(immediate) right side to give the new frequency or number of data points
in the given bin. This process is repeated for all bins except the first and
last bins. To account for end effects, smoothing of “end” bins is done by
taking the weighted sum of three-quarters of the frequency in the given bin
plus one-quarter of the frequency in the bin immediately next to the given
bin. The smoothing of all bins result in a “smoothed frequency histogram”
(Figure 10).ftpFU441.6875pt211.625pt0ptRelative Frequency Histogram for
Duration of IFR ConditionsFigure

Each bin of a histogram corresponds to the duration of reduced capacity
in a particular 1-Parameter ACD. Thus the histogram can be thought of as
the distribution of 1-Parameter ACDs. To get an associated probability of
an ACD (or bin on histogram), simply divide the frequency in a given bin
by the total sum of frequencies (relative frequency):

P(S;) = Frequency,Sumof Frequencies, for each scenario
(ACD) S and bin 1.

It can be argued that a distribution based on weather data is more
representative of durations of IFR conditions. Distributions of IFR con-
ditions at SFO were derived using data from “Surface Airways Hourly”
from the National Climatic Data Center (NCDC') during the years 1984-
1992. This database contains an hourly listing of surface weather obser-
vations that are taken at stations located primarily at major airports and
military bases. These stations are operated by the National Weather Ser-
vice (NWS), the U.S. Air Force Weather Service, the U.S. Navy Weather
Detachment and the FAA. Data at these stations are collected using the
Automated Surface Observing System (ASOS) that was designed primarily
for aviation operations. The weather variables used to determine distribu-
tions of IFR conditions are ceiling height and visibility. Figure 11 gives the
distribution, based on weather data, with the relative frequencies along the y-
axis. ftbpFU422.875pt216.875pt0pt “Conditional” Distribution of Durations
of IFR ConditionsFigure This distribution is a conditional distribution be-
cause it is the distribution of duration of IFR conditions given that the
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duration equals or exceeds one hour. Thus, there is no zero bin in this dis-
tribution, but there is a zero bin on the GDP distribution. Since the goal
is to estimate the duration of IFR conditions during instances of capacity-
demand imbalances for which a GDP will be implemented, some reasonable
combination of the two distributions is sought. One alternative is to derive a
conditional distribution of the durations of IFR conditions given that a GDP
is planned. To determine this “conditional” distribution, we simply include
the zero bin from the GDP distribution in the distribution of IFR conditions
and normalize accordingly to derive the new associated probabilities. See
Figure 12.

Histograms are used to give information about an underlying probability
distribution function (pdf) of empirical data. In this section, histograms cre-
ated using ALL available empirical (GDP and weather) data were presented.
The underlying pdf will be referred to as a Capacity Probabilistic Distribu-
tion Function (CPDF') and is the vector of 1-Parameter ACDs that will be
used as input into the Hoffman-Rifkin model. The underlying CPDF is a
distribution that is based on weather conditions that are highly stochastic
in nature. It is feasible to think that the CPDF would change according to
the changes in weather. Thus, the fundamental mechanism that controls the
CPDF is continuously changing over time. A CPDF can be created from
any given set of observations, in this case, for the set of years of available
historical data at SFO. There are different types of CPDFs that can be de-
rived by partitioning the overall CPDF into subunits based on the underlying
changing mechanism (weather). In the next sections, models are presented
that are the result of partitioning the overall CPDF in different ways.

4 Estimating (Types of) Capacity Probabilis-
tic Distribution Functions

Given empirical data about capacity (or IFR conditions), relative frequency
histograms can be constructed and used to estimate CPDFs. In order to
account, for changes over time in the underlying weather mechanism, daily,
monthly or seasonal CPDF's are all types of distributions that could be of
interest. The type that will ultimately be utilized depends on the operational
preferences of the specialists at the ATCSCC, as well as other factors.

The specialists may be interested in using daily distributions, which could
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be obtained by creating relative frequency histograms for a given day over
many years of data. If there is not a substantial number of years of data,
sample size becomes a problem. One way to address the problem of sample
size for daily distributions is to group the daily data by month. This grouping
would yield monthly CPDFs. It is possible that several months may have the
same or similar CPDFs, especially in the case of distributions of IFR or in-
clement weather conditions. Weather conditions such as thunderstorms and
snow occur at certain times of year or during specific seasons. At SFO, the
most prevalent weather conditions are radiation fog and advection fog. Radi-
ation fog is also known as ground fog and occurs when the temperature drops
to the dew point near the ground. Advection fog occurs when warm, moist air
moves over a colder land mass. According to the Weather Sensing Group at
MIT’s Lincoln Laboratory, radiation fog occurs more than 100 days annually
and advection fog is the next most frequently occurring weather condition
at SFO. (See Figure 13)ftFU6.2353in4.5109in0ptFrequency of IFR events at
Major US Airports (Reproduced with Permission from MIT’s Lincoln Lab-
oratory)ifr3.wmf Based on conversations with specialists at the ATCSCC,
fog is heaviest from September to the middle of March and burnoff times
are difficult to ascertain. Through the Marine Stratus Initiative at SFO [7],
which is led by the Weather Sensing Group at Lincoln Laboratory, it has
been determined that the stratus cloud season is during the months of May
to September. As an example, a possible CPDF may be the same during the
months September-March and the same during the months May-September,
but different for the two groupings of months. In the next section, we will
present methods for determining seasonal CPDFs. It can be assumed that
seasonal GDPs correspond to seasons of certain weather conditions. Thus,
monthly distributions will be grouped into seasons, based on some measure
of similarity, to create seasonal CPDFs.

4.1 Seasonal Distributions

Decomposing an overall CPDF into groupings of months (seasons) based
on some measure of similarity (dissimilarity) is reminiscent of partitional
clustering in which data is partitioned into disjoint clusters. This partitioning
is done by minimizing a measure of dissimilarity within each cluster and
maximizing the dissimilarity between different clusters. (See Hartigan [12]
for more information on clustering techniques.) The data used for this paper
are time ordered, so a simple clustering technique is not adequate. A method
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is needed to perform clustering that is imbedded in a time series. This type of
clustering will be referred to as “seasonal clustering”. The resulting clusters
must be contiguous and homogeneity should exist within the clusters. Since
the data constitute a time series, a time plot could be used to detect seasonal
trends as an initial step in determining seasonal clusters.

4.1.1 Detecting Seasonal Trends

Time plots can be used to gauge an overall trend in time-ordered data. Fig-
ure 14 is a simple time series plot of average GDP lengths from month to
month for 1995 through 1997. Observe that the months October to March
lie above the horizontal line (average GDP length = 3 hours) and the months
May to September lie below the line. This observation gives credence to the
idea that the CPDFs would differ between these two groupings of months,
as stated in the previous section.ftbFU436.0625pt241.0625pt0OptTime Series
Plot of Average GDP DurationsFigure In the next sections, model formula-
tion and solutions of a more rigorous analysis to ascertain seasonal clusters
are presented.

4.1.2 Model Formulation

Given the twelve months in a year, the goal is to partition the year into
groupings of (contiguous) months that contain the most similar weather con-
ditions. The problem of determining the optimal partitions (seasons) can be
formulated as a set covering/partitioning integer programming problem. The
goal of the set covering integer program (IP) is to “cover” the whole year by
a finite number of covers or seasons with the smallest total cost. The goal
of the set partitioning IP is to cover the whole year by a finite DISJOINT
set of seasons in a least cost fashion. Recall that the set covering IP has the
following formulation (See [16]):

Minimize Y Cipxy
k=1

subject to > aj; x; > 1, for each month j
k=1

Xi € {0,1}
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where A=[a ;] is a 0-1 incidence matrix with a;; = 1 if j €M (month j
is in candidate season My), 0 otherwise; {My}7_; corresponds to the set of
candidate seasons; n is the number of candidate seasons; Cgis the cost of
including Myin the cover; and x; is a binary variable with value 1 when Myis
included in the cover, and 0 otherwise. (Recall that in the formulation for
the set partitioning IP, the constraint is an equality.)

In this case of assigning months to seasons, the columns of A (i.e. the
set of My’s) can be efficiently enumerated since a season is characterized
by a start month and an end month and the months must be contiguous.
The possible seasons can be enumerated according to length of (contiguous)
months. If all possible combinations are allowed, i.e. groupings 1 month in
length (Mjy,..., Mj2), 2 months in length (M;s,..., Mas) up to 12 months in
length, there are a total of 133 possible seasons. Since there are 12 months,
there are 12 different seasons for each possible season length except for the
season of length 12 (only 1 way). Thus, 12 multiplied to 11 plus 1 results in
133 possible seasons. Intuitively, no weather season lasts more than 5 months.
If the length of the season is restricted to being no more than 5 months, then
there is a total of 60 possible seasons. Since there are 12 months and 5
different possible season lengths, enumerating the seasons yields 60 possible
seasons in this candidate season set. Results will be given for the candidate
season set of size 60. The incidence matrix A (for a candidate season set of
size 60) is:

M,y

M12 M13 M24 M49

Jan
Feb
Mar
Apr
May
A= Jun
Jul
Aug
Sep
Oct
Nov
Dec

oooooooooo»—nowi
=== R=R=Eel=R ===
ooooooooo»—w—no§
=~
OOOOOOHHHHHO;
(=]

eoNeoBeoleoBololoBolaNaolRal
OO OO OO OO OO
_ O O OO0 OO oo oo
O OO DD OO EHEE

Observe that the 0-1 incidence matrix, A, almost has the consecutive ones
property; for example, the ones in columns Mi3, My, Myg and Mjy, are
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consecutive. A matrix has the consecutive ones property if in any given
column, ones appear consecutively. Recall that a matrix having this property
is totally unimodular (TU), and thus, the IP can be solved as an linear
program (LP). This is a desired property because LPs can be efficiently
solved using commercial software whereas IPs are, in general, more difficult.
The consecutive ones property does not hold because there are wrap around
columns such as Moy and Mg in matrix A. Though a matrix with consecutive
ones and wrap around is not TU, it can be solved in polynomial time using
a simple iterative procedure. This procedure involves rotating rows to delete
the wrap around column and solving the LP for each rotation. The solution
chosen is the best solution of all the optimal solutions of the rotations.

4.1.3 Seasonal Clusters Based on Average GDP Durations

In this section, a seasonal “clustering” technique that assigns consecutive
months to a particular season based on some measure of similarity will be
developed. A way to derive a finite number of seasons that contain contiguous
months in a least costly fashion is desired. A set covering/partitioning integer
program model will be used to determine the seasons.

Since the seasons are chosen in a least costly fashion, a cost of a season
must be defined and determined. Conceptually, the cost of season M;, Cj,
is the “difference” between a month’s CPDF and a season’s CPDF. In this
analysis, the cost function will be based on a difference in means. While
this clearly represents an approximation, it should be noted that it appears
that there exists a direct (increasing) relationship between the mean and
the variance of GDP Durations (Figure 15). Hence, a cost function based
on comparing means should also capture differences in variances, in this
case.ftbpFU427.8125pt228.3125ptOptRelationship Between Mean and Vari-
ance of GDP DurationFigure

Several cost functions are possible for comparing seasonal and individual
monthly means. In this section, different cost functions will be given and
compared. Section 4.3.5 will discuss a way to evaluate the quality of a given
set of seasons based on a broader set of criteria.

The following cost functions are considered: (i) sum of squared deviations
(SoSgs), (ii) normalized sum of squared deviations, or (iii) seasonal variances.
The cost functions were chosen because they measure the difference between a
season’s mean and the means of the months contained in the season. The first
cost is the sum of squared deviations between a season’s value (average GDP
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Sum of Squared Deviations(SoSqs) 5 (X,;—X.)?
=1
Normalized SoSgs Olm > (X; — X )?
=1
Seasonal Variances Olm -1 3(X; — X )2
7

Table 2: Seasonal Clustering Criteria (Cost Functions)

duration) and the values of the months contained within that season. The
cost, normalized sum of squared deviations, is the sum of squared deviations
divided by the number of months contained in that season. This cost function
is chosen due to the possibly of a longer season being penalized by having a
larger value for SoSqgs. A seasonal variance is deemed appropriate because
actual daily ground delay durations are considered. A seasonal variance is
determined by calculating the variance of all daily GDP durations from the
overall seasonal average. Table 2 gives the formulas for the three different
clustering criteria. Here X ; is the average over all days ¢ in month j, X is
the (overall) seasonal average over all days 7 and all months j, and X;; is the
GDP length on day ¢ in month j.

As an example, the cost of the January/February GDP Season using
SoSqs is calculated:

Ci13 = (GDPAvgy3 - GDPAvg,)?* + (GDPAvg,3 - GDPAvg,)?
= (4.62 - 5.08)2 + (4.62 - 4.16)?
=.2116 + .2116
=.4232

where 13 denotes the January/February Season, 1 denotes month January
and 2 denotes month February.

The candidate set of seasons must be enumerated and input into the set
covering/partitioning model. Each season has a value: the average duration
of a GDP in that season. For example, the value for January is the average of
the Jan95 average GDP duration, Jan96 average GDP duration and Jan97
average GDP duration. The value for the Jan/Feb season is the averages
of all GDP average durations for Jan95, Jan96, Jan97, Feb95, Feb96 and
Feb97. It is possible that the set covering/partitioning procedure, under cer-
tain seasonal clustering criteria, could choose all seasons of length 1. Hence,
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For 60 Possible Seasons: | N = 3 N=14 N=5
Apr-Jun
Apr-Jun ?ﬁ?jﬁn Jul-Sep
SOSQS Jul-Oct & Oct/Nov
Sep/Oct
Nov-Mar Nov-Mar Dec/Jan
. Feb/Mar
Feb-Jun Apr/May
' Apr-Aug Jul.Se Jun
Normalized SoSqgs Sep/Oct P Jul/Aug
Oct/Nov
Nov-Mar Dec/J Sep/Oct
e/ can Nov-Mar
Mar-Jun
. Apr-Aug ?ﬁi)Acl;g Jul
Seasonal Variances Jul-Oct T Aug
Nov-Mar Nov M Sep
oAt Oct-Feb

Table 3: Set Covering Solutions of GDP Seasons (n=60)

the following constraint, which limits the number of seasons chosen, is added
to the set covering formulation:

=1
Note: N is the maximum nur]nber of covers or seasons.

To solve this set covering problem, the CPLEX Linear Optimizer 6.0 on
a SUN Sparcl0 Station was used. Table 3 gives the set covering solutions in
terms of seasons for n=60. Observe for N=4, there is “over-covering” that
occurs using the seasonal variance cost function. If set partitioning is used,
then the resulting seasons (Mar-Jul, Aug, Sep, Oct-Feb) are disjoint. This
approach seems more appropriate for a seasonal “clustering” method since
the results of the set partitioning model ensures disjoint clusters.

It is interesting to note that the seasons determined by the SoSqs’ sea-
sonal clustering criterion correspond to the boxed seasons in the time plot of
the monthly average GDP durations averaged over all 3 years, 1995, 1996 and
1997 (Figure 16). ftbFU408.1875pt200.4375pt0ptAverage of Monthly Aver-
age GDP Durations over 1995, 1996, 1997 Figure In the remainder of this pa-
per, the seasons for this particular result will be referred to as: Winter GDP
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GDP Durations in hours —;, || 0 1 2 3 4 5 6 | >7
Winter (Nov-Mar) 211 .09 .07 { .06 || .15 || .08 || .08 || .26
Winter-Smoothed A4 .12 .08 || .09 || 12 | .11 || .07 || .27
Spring (Apr-Jun) 35 .15 ] .10 || .12 | .13 || .06 || .01 || .08
Spring-Smoothed 23021 13| 13 || .12 | .07 | .04 || .07
Summer (Jul/Aug) 35129 | .17 { .10 | .05 || .02 || O | .02
Summer-Smoothed 27030 .20 || .12 || .06 || .03 | .01 || .01
Fall (Sep/Oct) 21| .10 27|08 .12 .10 .08 | .04
Fall-Smoothed A4 ) A8 || .19 | 15 || 11 | 11| .08 || .04

Table 4: ACD Probabilities for Frequency and Smoothed Histograms

Season (Nov/Dec/Jan/Feb/Mar), Spring GDP Season (Apr/May/Jun), Sum-
mer GDP Season (Jul/Aug), and Fall GDP Season (Sep/Oct). In Table 4,
the relative frequencies or associated probabilities of ACDs in a particular
season are given for both the frequency histograms and the smoothed his-
tograms. Note that the probabilities that the duration of a GDP lasting 7
hours or more are higher during the “winter” season, as is expected since it
takes longer for fog conditions to burn off during the winter months.

In this section, our analysis produced a partitioning of the months of
the year into disjoint seasons, based on GDP data, with a corresponding
distribution for each element in the partition. The same procedures could be
applied using the weather data. In the next section, the clustering criterion
developed will be based on differences in distributions rather than differences
in means. This criterion will be applied to both the GDP data and the
weather data.

4.1.4 Seasonal Clusters Based on Empirical Distribution Func-
tions

In the previous section, CPDFs were based only on means due to the rela-
tionship between the means and variances. Since it is possible to have two
distributions that have the same mean, but are different, the cost function (in
this section) will be based on differences in distributions instead of differences
in means.

An empirical distribution function (EDF), which is completely deter-
mined by observed values of a random variable, is used to estimate an un-
derlying cumulative distribution function (cdf) of a group of observations or
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empirical data. The Kolmogorov-Smirnov (KS) test is used to test if two
or more samples come from the same distribution. Since the KS statistic
measures the maximum deviation between the EDFs within classes and the
pooled EDF, it will be used as the cost of a season in the cost function of the
set covering/partitioning formulation. (See [17] for more detailed information
on EDFs and KS tests.)

For any given season in the candidate season sets of size 60, an EDF is
calculated for each month j in the given season according to:

3

Fi(x) = %k II{xk <z},k=1,..,n

where n is the number of data points (days of GDPs or IFR conditions) in
month j. For each real number =, F(z) calculates the proportion of data
that is less than or equal to that point . The average of the monthly EDFs,
known as the pooled EDF, gives the EDF for the season. The pooled EDF,
F(x) is computed by:

F(x) = 5 2;n,F;

where n; is the sample size for month j and n = >>;n;. The KS statistic is
appropriate for measuring the difference in a season’s EDF and the EDF's of
the months contained in that season. The KS statistic will be used as the

cost of a given season in any of the candidate season sets and is calculated
as:

maxx\/zjj()njn[ﬂ(:c) —F(x))?,z=1,2,..,n

A season whose K8 statistic is small implies that the maximum deviation
of any month’s EDF from the seasonal EDF is small. Hence, the objective
of the set covering/partitioning formulation is to minimize the maximum
deviation of the months” EDF's from the seasonal EDF or minimize the KS
statistic for a given season. Note that the KS statistic requires two or more
classes (months) in order to be calculated, thus no single month seasons are
allowed using this cost criterion. Table 5 contains the resulting seasons using
both the GDP data and the weather data for 60 candidate seasons.

The seasonal clustering criterion (cost function) developed in this section
have yielded many different sets of seasons. A method is needed to assess
the quality of the sets of seasons and to determine which set is the “best”
set.
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For 60 Possible Seasons: N=3 N=14 N=5
Apr/May
Apr/May ?pl;_iun Jun-Oct
Covering (GDP Data) Jun-Oct 1/ 28 Oct/Nov
Sep-Jan
Nov-Mar Feb/Mar Dec/Jan
o/ e Feb/Mar
Apr-Jun
Apr/May iﬁ;—izn Jul/Aug
Partitioning (GDP Data) Jun-Oct & Sep-Nov
Sep-Jan
Nov-Mar Feb)/Mar Dec/Jan
e Feb/Mar
Mar/Apr
Mar-Jun ﬁir//ﬁfi May/Jun
Covering (Weather Data) Jul-Sep Y Jul-Sep
Jul-Sep
Oct-Feb OctTeh Oct/Nov
e Nov-Feb
Mar/Apr
Mar-Jun ﬁzr//ﬁﬁ; May /Jun
Partitioning (Weather Data) | [ Jul-Sep Y Jul-Sep
Jul-Sep
Oct-Feb OctTeh Oct/Nov
e Dec-Feb

Table 5: Set Covering/Partitioning Solutions using KS statistics (n=60)
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4.1.5 Post Analysis for Evaluating Sets of Seasons

In previous sections, different cost functions yielded different sets of seasons.
The question now is: which set of seasons is the “best” set? This section will
discuss different methods for evaluating the quality of a given set of seasons.
One way to evaluate a given set of seasons is by comparing the means of
the different seasons to ascertain if they are statistically different from each
other. This can be done using the method of multiple comparisons in a
single-factor analysis of variance (ANOVA). Single-factor ANOVA is used to
test whether there do indeed exist statistically differences in the means of
the months [16]. The Single-Factor ANOVA model can be written as

Yij = p+ajt e
where Yj; represents the i observation of the j factor level
1= 1, 77,]7 j = 1, ceey k,

n; is the number of observations for the j™ factor level, k is the total number

of factor levels, p is the overall mean of all factor level means, and «; is called

the effect of the 5™ factor level. The unknown parameters (u, «;) are usually

estimated from the data using the method of ordinary least squares (OLS).
s

In OLS, Zk:l é(YU — p— «;)? is minimized with respect to p, ag, az, ..., .
—1i=

Singlé—factor ANOVA must be performed before multiple comparisons
because if there does not exist a difference in means (null hypothesis not
rejected), then there is no need to determine where the differences are. An
F-test is used to determine if there are statistically significant differences
among the means of the months. Using the model involving the average GDP
durations, the F-test tested the hypothesis that all factor level (monthly)
means are equal and resulted in a p-value of .0030, which implies that there
does exist some linear function of parameters that is significantly different
from 0. In other words, there does exist a significant difference in means of
the months.

It should be noted that the results of an F-test are valid only if certain
assumptions about the error terms are satisfied. The error terms must be in-
dependent, have zero mean, constant variance (known as homoscedasticity),
and must follow a normal distribution. In the case of daily GDP durations,
the assumptions of constant error variance and normality were violated. The
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Contiguous Seasons | Mean Square Ratio
n=60 Mar-Jun vs Jul-Sep 14.06
Jul-Sep vs Oct-Feb 24.39

n=133 || May/Jun vs Jul-Sep 11.41
Jul-Sep vs Oct-Apr 23.33

Table 6: Mean Square Ratios of Weather Seasons

assumptions on error terms are not often satisfied in practice, thus, caution
should be taken with this method.

To avoid the issue of whether assumptions are satisfied or not in order for
the F-test to be valid, the mean square ratio (better known as the F-value
if normality is satisfied) can be used to evaluate a given set of seasons. The
mean square ratio is the ratio of the mean square between groups (seasons)
and the mean square within groups (seasons). It is desired to have seasons
that exhibit homogeneity within seasons and variability between seasons. A
mean square ratio that is large confirms that this is the case. The mean
square ratios are computed for pairwise contiguous seasons. If the minimum
of these values is greater than some large constant, e.g. 10, then the set
of seasons is valid. The set of seasons resulting from the set partitioning
procedure that minimized the KS statistic using weather data satisfy the
mean square ratio criterion. See Table 6. For the candidate season set of size
60, the season Mar-Jun will be referred to as the “Rainy/Transition” Season,
Jul-Sep as the “Summer Weather” Season and, Oct-Feb as the “Heavy Fog”
Season. The CPDF's for these seasons will be used as input into the Hoffman-
Rifkin model and results will be compared with Command Center plans.

Many cost functions were given in previous sections to determine sets of
seasons and the post analysis in this section is used to determine the best
set of seasons. Best refers to a set of seasons where there exists as much
intra-season homogeneity as possible and as much inter-season variability as
possible.
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5 Decision Models for Determining Assigned
Ground Delay

5.1 The Hoffman-Rifkin Static Stochastic Ground Hold-
ing Model

In their theses, Ryan Rifkin (Massachusetts Institute of Technology)[21] and
Robert Hoffman (University of Maryland)[13] developed integer program-
ming models to address the static stochastic version of the ground holding
problem (GHP). (For a succinct description of the model, see [5]). Recall
that the GHP is the problem of determining an optimal balance between
the amount of delay to assign to flights to be taken on the ground during a
GDP and the amount of expected airborne delay. The Hoffman-Rifkin static
stochastic ground holding model (H-R) [5] is formulated as:

Minimize i ceGy + % % CaP Wt
t=1 g=1t=1
subject to
Ay =G+ Gy =Dy t=1,.,T+1 (1)
Go=Gry1 =0
W1 + Wi — A >—M,, t=1,....T+1, (2)
qg=1,...,Q
Weo=Wyri1 =0
Ae Z Wy, € Z Gy e Zy (3)

The objective of the H-R model is to minimize the sum of the costs of assigned
ground delay and the costs of expected (unplanned) airborne delay. The
decision variables, A;, represent the number of flights that should arrive at
the airport in time period ¢ with no airborne delays. One can think of A; as
a planned AAR (PAAR) during time period ¢. Also, W, is the number of
flights delayed in the air from time period ¢ until a subsequent time period
under scenario g and M, is the arrival capacity during time period ¢ under
scenario ¢q. A sequence of M, for the whole time horizon, 7', is one possible
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capacity scenario ¢ or ACD. Recall the various forms of ACDs as discussed
in Section 3.1. The interpretation of GG; has certain subtleties. It can be
thought of as the number of flights delayed on the ground from time period ¢
to t + 1. However, here time is measured relative to the time at which these
flights would arrive at the airport. The actual time at which the delay would
be taken is determined by choosing the specific flights to be delayed and then
subtracting the appropriate (flight-specific) en-route times. Constraint set
(1) states that all flights that are predicted to arrive in time period ¢ (demand
or D;) or were delayed on the ground from the previous time period (G;_1)
should arrive in the current time period (A;) or be delayed on the ground
until a subsequent time period (G;). Constraint set (2) states that under
scenario ¢, all flights scheduled to arrive in the current time period or that
are air delayed from a previous time period (W, ;1) must be air delayed until
a subsequent time period or must arrive in the current time period.

The inputs into the H-R model are: the number of predicted arrivals or
demand for each time period t (D;), the cost of ground delaying one flight
for one time period (¢,), the cost of one period of airborne delay of a single
flight (c,), and @ capacity scenarios (ACDs) with associated probabilities,
py- The output of the model is the number of flights that should land in a
given time period ¢, Ay, i.e., the number of arrival slots that should be made
available in each time period t.

The H-R model assumes that all ground delay assigned under a particular
output scenario is realized, deterministic and independent of the scenario.
The model does not take into consideration the dynamic changes that may
occur if one scenario is planned and another occurs. Thus, the model does
not give the flexibility to make changes in assigned ground delay as forecasted
weather conditions change.

5.1.1 Results using Seasonal CPDF's

The capacity scenarios (1-Parameter ACDs) and their associated probabili-
ties derived in Section 4.1.5 are required inputs into the H-R model, along
with the demand or predicted arrivals for each time period over a given (dis-
cretized) time horizon, the cost of one unit of (assigned) ground delay, and
the cost of one unit of expected airborne delay. In this section the ACDs for
SFO will be used as inputs into the H-R model to determine assigned ground
holds. The H-R model will then be modified to allow for dynamic revisions
to the assigned ground holds and results from the modified H-R model will
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be compared to actual ATCSCC plans.

To compare the results of the modified H-R model to ATCSCC plans,
actual GDPs during 1998 were run through the H-R model to determine the
PAAR from the model (M_PAAR) over a given time period. Aggregate De-
mand Lists (ADL) were used to determine the aggregate demand for each
time period 4 hours in advance of the planned start time of the GDP. Spe-
cialists at the ATCSCC plan a GDP at least 4 hours in advance based on
forecasted weather conditions, predicted demand and capacity. In the ADLs,
there are only 7 periods (hours) of predicted demand 4 hours in advance of the
proposed start time of the GDP. Due to this constraint in the ADLs, each
ACD contains only 7 periods of planned capacity from the proposed start
time of the GDP. There are a total of 8 input capacity scenarios. The associ-
ated probabilities used depend on the seasonal CPDF's of choice. For analysis
purposes, the seasonal CPDFs used are those resulting from the set parti-
tioning method that minimized differences in EDF's implemented on weather
data. These seasons were referred to as the “Heavy Fog” (Oct-Feb) season,
the “Rainy/Transition” (Mar-Jun) season and the “Summer Weather” (Jul-
Sep) season. These seasonal CPDFs were chosen for analysis because the
F-values between contiguous seasons satisfy the mean square ratio criterion
for a good set of seasons (Section 4.1.5). The associated probabilities for
the 1-Parameter ACDs in the seasonal CPDFs (Figures 17, 18,19) are con-
ditioned appropriately for the inclusion of the 0-hour reduced capacity ACD
from the GDP data. The costs of one unit (minute) of ground delay and
air delay were based on a study by the Air Transport Association (March 2,
2000) and reported by Metron, Inc. [1] The study concluded that the cost of
one minute of delay at the gate is $24.30, the cost of one minute of taxi-out
delay is $30.47 and the cost of one minute of airborne delay is $47.64. Based
on these values, one unit of airborne delay costs 1.96 times more than one
unit of ground delay. The H-R model was run with ¢, = 1 for three alterna-
tive airborne delay factors: ¢, = 1.5,¢, = 2.0, and ¢, = 2.5. Note the most
realistic representation of ¢, is 2.0 since airborne delay is 1.96 times more
costly than ground delay. The M_PAAR (PAAR resulting from H-R model)
results are given in Table 7.

ftbpFU164.3125pt174.8125pt0ptCPDF for “Heavy Fog” SeasonFigure ftbpFU161.3125pt174.06
for “Rainy/Transition” SeasonFigure ftbhpFU159.0625pt166.5625pt0ptCPDF
for “Summer Weather” SeasonFigure
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Weather Season || ¢, =15 | c, =20 c, =25
Oct-Feb 3 hours || 4 hours | 5 hours
Mar-Jun 2 hours || 3 hours | 4 hours
Jul-Sep 2 hours || 2 hours | 3 hours

Table 7: Results of the H-R Model (Number of Hours of Reduced Capacity)

5.1.2 Observations and Limitations of the H-R Model

It was empirically observed that the resulting plan (PAAR), or capacity
scenario, output by the H-R model always corresponded to one of the input
ACDs, i.e. the optimal solution to the H-R model always coincides with
that of a deterministic problem that uses one of the capacity scenarios in the
probabilistic forecast as inputs. (The conditions under which this property
is guaranteed to hold will be explored in a subsequent paper). However,
determining which scenario should be used, nonetheless is a problem that
must be solved. Assuming the output scenario will always correspond to
one of the input scenarios, there are a finite and small number of possible
scenarios that could be “cost out” to determine the best scenario. The H-R
model assumes that ground delay is deterministic and does not change as the
weather changes. It can be shown that if inclement weather dissipates, some
assigned ground delay can be recovered. On the other hand, if inclement
weather persists longer than anticipated, additional delay may be incurred.
In this latter case, the H-R model assumes that all additional delay is in the
form of airborne delay. This is not necessarily the case as will be seen in the
next sections. Thus, the H-R model overestimates airborne delay. Because
of all the aforementioned observations and limitations of the H-R model, a
modified version of the H-R model is proposed in the next section.

5.2 General Decision Model

The H-R model attempts to capture the stochastic nature of weather through
the probabilistic distribution of capacity scenarios. It outputs a particular
scenario based on demand, the air to ground cost ratio and the probability of
the scenario. It does not capture the existing ability to dynamically change
assigned ground delay as (predicted) conditions change. For example, if a
dissipation of predicted weather occurs, then it may be possible to reduce
previously assigned ground delay. Thus, some assigned ground delay may
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be recovered if a GDP is canceled due to dissipation of inclement weather.
Alternatively, if the duration of poor weather is longer than expected, then
the GDP can be revised/extended, hereby assigning additional ground delays.
In the next sections, we will discuss how to modify the H-R model so that
its cost functions realistically reflect the dynamic updates that take place
during GDPs as mentioned above.

5.2.1 Adjusting Assigned Delay in Canceled GDP

Here we consider the case where a GDP is canceled, i.e. the duration of
reduced capacity is less than the value specified in the PAAR. Depending on
how far a flight’s (controlled) departure time is from the cancellation time
of a GDP, the flight can recover some or all of its assigned ground delay.
Suppose a flight f had an original estimated time of departure (OETD) of
12:30, but under a GDP, it was given a controlled time of departure (CTD)
of 1:15. Now suppose that the inclement weather clears such that the GDP
is canceled at 12:15. Since flight f is still on the ground at this cancellation
time and full capacity has been restored, it is allowed to take off as soon as
possible. However, a number of factors, e.g., the status of the passengers,
might delay the time at which the flight is able to depart. For example, its
actual runway time of departure (ARTD) might be 12:45. In this case, some
of its assigned delay (CTD-OETD) is recovered. The actual ground delay
(GD) realized is ARTD-OETD. In this scenario:

e Assigned GD = CTD - OETD = 1:15 - 12:30 = 45 minutes
e Actual GD = ARTD - OETD = 12:45 - 12:30 = 15 minutes

e GD Recovered = Assigned GD - Actual GD = CTD - ARTD =
1:15 - 12:45 = 30 minutes

Flights whose CTDs are prior to the GDP cancellation time (CNXTime) will
incur all of their assigned GD. Thus, only flights that are controlled to depart
after the CNXTime can recover some of their assigned GD. If a flight’s OETD

is before the CNXTime, then the amount of assigned GD that is available for
recovery is CTD-CNXTime. (See Figure 20).ftbpFU6.8398in3.8865in0ptGround
Delay Available for Recovery (Recoverable GD)cnxplot2.wmfThus, the per-
centage of assigned recoverable GD that is actually realized is:

ARTD — max(OETD,CNXTime)min(CTD — OETD,CTD — CNXTime)
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Time Intervals | % GD Recovered
0-30 mins 0%

31-60 mins 40.80 %

61-90 mins 65.20 %

91-120 mins 77.15 %

> 120 mins 100 %

Table 8: Average Percentages of GD Recovered in a Canceled GDP

The above percentage can be greater than 1 if a flight’s ARTD is greater than
its CTD. This means that the flight incurred extra delay (possibly) unrelated
to the GDP. In our data analysis, such flights are assumed to have incurred
100% of their assigned GD. To determine the percentage of recoverable GD
that was recovered, we subtract the above value from 1:

1-
[ARTD — max(OETD,CNXTime)min(CTD — OETD,CTD — CNXTime)]

Using the information in the ADL files for all flights scheduled to arrive
at SFO on all days in 1998 that a GDP was planned and run during the
morning hours, the percentage of recoverable GD recovered as a function of
a flight’s CTD minus CNXTime is calculated.

Several methods for filtering the data were implemented. No one filtering
method resulted in a set of data to which a good function could be fitted (low
R?) due to noise. Thus, averages of percentages of GD recovered are calcu-
lated in 30-minute intervals. It is assumed that any flight whose CTD is no
more than 30 minutes after the CNXTime recovers none (0%) of its assigned
GD and any flight whose CTD is more than 2 hours after the CNXTime
recovers all (100%) of its assigned GD. Table 8 gives the average percentages
for each 30-minute bucket (except for the 0 — 30 mins and the > 120 mins
buckets). These assumptions will be observed and the respective percentages
will be used to modify the output of the H-R model. The amount of assigned
(recoverable) GD in a canceled GDP is adjusted by the (recoverable) amount
that is recovered,

Recoverable GD realized =
Assigned Recoverable GD - (% GD Recovered)*(Assigned Recoverable GD).
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5.2.2 Adjusting Assigned Delay in Revised GDP

With the emergence of CDM came the flexibility to “revise” different pa-
rameters of the GDP as conditions (weather or demand) change. If a GDP
is revised/extended due to the worsening of weather conditions, then the
originally assigned ground delay is modified and, thus depends on the sce-
nario. The H-R model assumes that ground delay is deterministic and that,
if reduced capacity lasts longer than the duration in the planned scenario,
then all “extra delay” is in the form of airborne delay. Thus, it overestimates
airborne delay. See Figure 21. If a flight’s CTD is before the revised time
(RevTime) of the GDP, then it may indeed incur unplanned airborne delay
(AD), but if the flight’s CTD is after the RevTime, then it should incur only
extra GD.

In a GDP, flight delays are initially calculated by setting a controlled time
of arrival (CTA). Assigned GD is set equal to CTA-OETA, and GD is then
added to the OETD to determine the CTD. Flights are exempted from the
revised portion of the GDP if

CTD - RevTime | 0

and the airborne delay they may incur is calculated by subtracting their
CTAs under the planned scenario from their CTAs under the actual scenario.
ftFU404.875pt144.9375pt0Opt Additional GD under Revised GDPFigure On
the other hand, flights whose CTDs satisfy

CTD - RevTime ; 0

can be assigned additional delay on the ground. The additional delay is
calculated just as stated above for the other case, but all the delay is taken
on the ground. Hence, assigned GD from the H-R model needs to be adjusted
appropriately for the flights in a revised GDP.

5.2.3 Procedure for Comparing Planned and Actual Capacity Sce-
narios

In this section, the results of the H-R model, modified as described in the last
two subsections for the actual GDPs in 1998, will be compared to the actual
Command Center’s plans for those same GDPs. Let F be a set of flights
(f) scheduled to arrive at a congested airport. We denote by M_PAAR the
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PAAR based on results from the H-R model, by CC_.PAAR the PAAR based
on the Command Center’s planned duration of the GDP, and by ACT_PAAR
the PAAR based on the actual duration of the GDP (baseline).

Given the planned and actual durations of reduced capacity, the proce-
dure assigns CTAs or virtual arrival slots to the flights that fall into these
durations or thereafter. The assigning of virtual slots is a basic recursion
procedure and thus, can be viewed as a deterministic queuing model. If
the AAR is 30 flights per hour, the slots are uniformly distributed over the
hour interval. The procedure proceeds by calculating the amount of assigned
ground delay (CTA/ — OETA’) under each “plan”, adjusting the amounts
appropriately depending on whether the plan is greater than the actual or
vice versa. Total Assigned GD under M_PAAR (TGD_M) is determined

by TGDM = Y GD!, p,4p Total Airborne (weighted) Delay (TAD_M)
fer

under M_PAAR for Revised/Extended GDP is determined by TAD-M =
(S ADY, pasr)¥ca.(Similarly, total assigned GD and weighted AD can be
fer

calculated under CC_PAAR.) Total Weighted Delay Under M_PAAR (TWD_M)
is calculated by summing total GD and total weighted airborne delay. (Sim-
ilarly, total weighted delay can be computed for CC_PAAR.) Average Total
Weighted Delay is calculated over a representative sample of GDP Days in
1998 (see next section for discussion) under M_PAAR:

AvgTWDM = 2 3> Sumy(TGD_M,TAD_M).
d=1

1
(Similarly, average total weighted delay can be computed for CC_PAAR.)
Average total weighted delay under M_PAAR and CC_PAAR are compared
to ACT_PAAR according to:

AvgTWD_M - Avg(TGD_ACT) compared to AvgTWD_CC - Avg(TGD_ACT).

5.2.4 Computational Results of Comparisons of H-R Results to
Command Center Plans

We now describe the results of experiments that tested the models and algo-
rithms described in the paper. The “representative” GDP days used in the
analysis of M_LPAAR and CC_PAAR are days in 1998 whose ADL files did
not contain any unreliable data due to temporary lapses in the data stream
over the CDMnet and whose initial PAAR is 30 flights per hour. Due to these
restrictions, there were not many GDP days available for analysis. Therefore
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AvgTGD_M = 728] || AvgTGD_CC = 891} | Avg(TGD_ACT) = 6875
AvgTAD M = 2417 || AvgTAD_CC = 1314 | Avg(TAD-ACT) = 0
AvgTWD_M = 9007 || AvgTWD_CC = 9850 | Avg(TWD_ACT) = 6875

Table 9: Total Weighted Delay of H-R Plans Vs Command Center Plans

a sample that represented the overall outcomes of all GDPs in 1998, was
chosen. This representative sample is based on the breakdown of the types
(outcomes) of GDPs in 1998 at SFO. (See Figure 22) The representative sam-
ple includes 11 GDPs;, of which 6 are canceled, 4 are revised/extended and
1 is run out. Run out means that the original planned duration of the GDP
is the same as the actual duration of the GDP. To determine M_PAAR, the
reduced capacity level used was 30 flights per hour (since this is IFR level
for SFO), the airborne delay cost factor (c,) used was 1.5, and the demand
levels used were the actual demands on the GDP days. CC_PAAR are the
actual durations that were PLANNED for the GDPs in 1998. Act_PAAR are
the durations that actually occurred on the GDP days.

Average total weighted delay was determined for M_.PAAR, CC_PAAR,
and ACT_PAAR according to the procedure outlined previously. Table 9
gives a summary of these results.

ftbpFU319.375pt174.0625pt0pt Percentage of Outcomes of 1998 Morning
GDPsFigure According to Table 9, both the average of total GROUND delay
and average of total weighted delay under M_PAAR are less than these val-
ues under the Command Center’s plan. The H-R model produces less total
weighted delay than the Command Center’s plan and this is confirmed be-
cause the difference between the average total weighted delay under M_PAAR
and the average total (ground) delay under ACT_PAAR is less than the dif-
ference between the average total weighted delay under CC_PAAR and the
average total (ground) delay under ACT _PAAR:

AvgTW D_M — Avg(TW D_ACT) = 9007 — 6875 = 2132 minutes, and
AvgTW D_CC — Avg(TW D_ACT) = 9850 — 6875 = 2975 minutes.

Overall for the representative sample of GDP days in 1998, there could have
been a savings of 843 delay minutes if our model had been used. Since there
is a reduction in delays, our model is capturing what it should. In general,
our model results in shorter planned durations of GDP than is currently
employed. It appears that the best recommendation to the ATCSCC is to
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plan shorter programs since there is a reduction in delay minutes. Since the
current practice at the ATCSCC is to assign a reduction of capacity for a
fixed duration regardless of the season, our approach seems more effective
since it takes into consideration the weather season and assigns duration of
reduced capacity accordingly.

6 Conclusions

With the tremendous growth of air traffic demand and congestion of the
airspace comes an increase in the need for innovative methodologies and im-
proved decision-support tools for effective Collaborative Traffic Flow Man-
agement (CTFM). Our analyses have indicated possible policy changes (by
suggesting the use of shorter GDPs). In addition, it generates the required
input for stochastic GDP models, which have the potential to substantially
improve existing decision-support tools. The research in this paper creates
a foundation on which further research can be built for the development of
models that would increase the effectiveness of CDM procedures. The obvi-
ous next step would be to apply the techniques in this paper to model weather
conditions at relevant airports using either the 1-parameter of 2-parameter
ACDs.

Currently, new decision-support tools, such as Collaborative Convective
Forecast Product (CCFP) and Integrated Terminal Weather System (ITWS),
have been developed to enhance the quality, accuracy and timeliness of
weather forecasts. A dynamic version of our approach could be developed by
feeding output from a terminal area weather model into the CPDF' generation
process.
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