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Abstract

In this paper, we present an Airspace Planning Model (APM) that has been developed for
use in both tactical and strategic planning contexts under various airspace scenarios. Given a
set of flights for a particular time horizon, along with (possibly several) alternative flight-plans
for each flight that are based on delays and diversions due to Special-use Airspace (SUA) re-
strictions prompted by launches at spaceports, or due to adverse weather conditions, this model
prescribes a set of flight-plans to be implemented. The model formulation seeks to minimize
a delay and fuel cost based objective function, subject to the constraints that each flight is
assigned one of the designated flight-plans, and that the resulting set of flight-plans satisfies
certain specified workload, safety, and equity criteria. These requirements ensure that the
workload for air-traffic controllers in each sector is held under a permissible limit, that any po-
tential conflicts are routinely resolvable, and that the various airlines involved derive equitable
levels of benefits from the overall implemented schedule. In order to solve the resulting 0-1
mixed-integer programming problem more effectively using commercial software (e.g., CPLEX-
MIP), we explore the use of reformulation techniques designed to more closely approximate the
convex hull of feasible solutions to the problem. We also prescribe a polynomial-time heuristic
procedure that is demonstrated to provide solutions to the problem within 0.01% of optimality.
Computational results are reported on several scenarios based on actual flight data obtained
from the Federal Aviation Administration (FAA) in order to demonstrate the efficacy of the
proposed approach for air traffic management (ATM) purposes.

Key Words: Air Traffic Management, Collaborative Decision Making, Reusable Launch Ve-
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With impending future implementations of the free-flight paradigm for airline operations,
and with the potential widespread use of the Reusable Launch Vehicle (RLV) technology, many
challenges arise in the context of airspace planning. The free-flight paradigm would permit
airlines to compose more cost-effective routes for their flights rather than be restricted to
traverse paths between designated way-points from various origins to different destinations. In
addition, it is anticipated that the RLV technology will add as many as 1,200 vehicle launches
over the next decade (AST, 1998), prompted by its ability to perform the same function as a
space shuttle expedition at a fraction of the cost. Given that each such RLV launch involves
the cordoning of a large section of airspace around the spaceport due to safety considerations,
this can result in a severe disruption of commercial air traffic as flights would routinely need

to be detoured around the ensuing so-called Special-use Airspace (SUA) restrictions.

Furthermore, a sharp increase in space transportation launches would induce increased delays
of many flights. Even under present-day operations, delays and re-routing of air traffic are ne-
cessitated not only due to SUA delineations caused by commercial and military space launches,
but also due to severe weather fronts or conditions, or due to zones of high turbulence. Events
of this type create the need for the airlines and the Federal Aviation Administration (FAA)
to jointly address how flights could be routed and scheduled in a collaborative decision-making

framework that would prescribe an efficient and equitable management of delays.

Motivated by the foregoing considerations, and in response to FAA’s need for a collaborative
decision-making tool, we develop a 0-1 mixed-integer programming model in this paper, called
the Airspace Planning Model (APM). Given a set of flights to be scheduled over a planning
horizon, along with several alternative flight-plans for each flight (referred to as surrogates for
each flight), this model selects a set of flight-plans that minimizes a delay and fuel cost based
objective function, such that each flight is executed via a designated flight-plan, while satisfying
certain specified workload, safety, and equity restrictions. The surrogates of each flight might
represent alternative free-flight trajectories, or traversals between designated navigational fixes,
that suitably differ in departure delay and time-space paths (including altitudes), while possi-
bly detouring around SUAs or weather fronts. The model also requires that the selected mix of
flight-plans should not impose any potential collision risk or conflict that is not routinely resolv-
able. Furthermore, the number of aircraft traversing each defined sector of the airspace at any
point in time, as well as the accompanying conflict resolution requirements, should be limited
to within a manageable workload level conformant with the corresponding sector’s Air Traffic
Control (ATC) capabilities. Moreover, any delays and additional costs (operational as well as

customer dissatisfaction penalties) should be equitably shared among the affected airline carri-



ers in some acceptable, defined sense. Within the framework of generating this proposed model,
we utilize two particular submodels developed by Sherali et al. (2000). These two submodels
are the Airspace Sector Occupancy Model (AOM), which determines the entering and exiting
times of flights traveling through the various sectors that are characterized as 3-dimensional
nonconvex polygonal regions of airspace, and the Aircraft Encounter Model (AEM), which ef-
ficiently detects all possible pairwise conflicts between flight-plans, providing detailed statistics
regarding the severity and geometry of each conflict. The information garnered from these two
models is used to generate the various constraints for the Airspace Planning Model developed

herein.

Some seminal research contributions in the area of air traffic management have been made
by Lindsay et al. (1993) and Bertsimas and Patterson (1998, 2000). Lindsay et al. present a
time assignment model for routing a set of flights through designated sequences of fixes. They
discretize time into (15 minute) intervals, and define binary variables to track the position of
each flight during each time interval with respect to its specified sequence of fixes. The derived
model seeks to minimize the total ground and air delay costs subject to capacity constraints for
the fixes, along with other flight duration, continuity, and turnaround relationships. The au-
thors mention (but do not implement) that equity among airlines could be incorporated within
their model by suitably adjusting cost coefficients and/or by imposing additional constraints
on the absolute or relative extents of delays that are assigned to each airline. Bertsimas and
Patterson (1998) consider a similar ground and enroute control model to determine optimal
release times for a set of aircraft, and their speeds between fixes, while accounting for airspace
capacities. They employ the same set of variables as Lindsay et al., but construct tighter model
representations in order to improve problem solvability. A significant model enhancement that
considers the dynamic re-routing of flights under changing weather conditions has been pro-
posed by Bertsimas and Patterson (2000). Here a time-space network of airports and fixes is
constructed based on assumed time-dependent flight durations between pairs of nodes. By ag-
gregating flights between each origin-destination (OD) pair and representing these as a flow of
a specific commodity, they model the problem of minimizing total ground holding and air delay
costs subject to flow balance, continuity, and sector capacity constraints as a multicommodity
integer network flow problem with side-constraints. A subsequent disaggregation of the result-
ing flows into specific flight trajectories is conducted using a randomization scheme. Observe
that this assumes homogeneity among the overall mix of aircraft. Again, in contrast with our
model, the authors only mention (but do not implement) the fairness or equity issue among
airlines, suggesting that it could be modelled by expanding the commodities to be OD-pair

as well as airline specific, and then ensuring while executing the disaggregation routine that



each airline receives no more than a given percentage of total delay. Observe also that none
of these foregoing models are designed to consider free-flight trajectories, nor do they address
collision-risk issues among the mix of prescribed flight trajectories, along with related conflict
resolution workloads imposed on the various sectors. On the other hand, while our model
considers all such specific aircraft characteristics, collision risk, sector workload, and equity
issues, it requires the pre-generation of alternative flight-plans for each of the flights. Hence,
our model can possibly benefit from the use of these other existing models to generate (perhaps
in a dynamic column generation fashion) alternative flight-plans. This feature will be explored

in future research developments.

Among other related works, Falker (1999) provides an in-depth review of current National
Airspace policies under which air and space traffic are kept separate. Future airspace scenarios
are examined in which space transportation launches have significantly increased, and a discrete
event simulation process is used to study several alternative modes of operations with respect
to their safety, efficiency, equity, and ease of implementation. Detailed summaries of several
other existing air traffic management models may be found in Odoni et al. (1997), and in a
concept paper by the Federal Aviation Administration/Eurocontrol (1998). Among these, the
Analytic Blunder Risk Model (ABRM) is an analytic/probabilistic model that estimates the
collision risk between two aircraft when one aircraft strays from its intended course and the
other must avoid it. Another relevant tool is the Traffic Organization and Perturbation Analyzer
(TOPAZ). This model evaluates the safety of any given operational concept by utilizing a suite
of simulation software modules that differ from other fast-time simulation routines by allowing
probabilistic deviations from normal operating conditions. The National Airspace Resource
Investment Model (NARIM) is another prominent analytical tool that has been developed to
assist the FAA and the National Aeronautics and Space Administration (NASA) in evaluating
future airspace scenarios. NARIM uses several analytical procedures along with data collected
from aircraft operations to provide a broad spectrum of information pertaining to optimal
altitude selections, aircraft performance characteristics, and system-wide performance, under
various alternative scenarios and new concepts of operations. NASA has also developed a
set of decision support tools that comprise the system CTAS (Center/TRACON Automation
System) in order to aid air traffic controllers, and to enhance the efficiency and handling
capacity at congested airports (see Erzberger et al., 1999, and McNally et al., 1998). The
model presented in the present paper could be integrated within the foregoing existing arsenal
of tools that are being utilized by FAA and NASA for both tactical and strategic planning
purposes. For example, CTAS has a conflict prediction and trial planning feature that permits

the evaluation of a trial flight-plan with respect to the conflicts it induces when introduced



within an existing mix of flight-plans. Our model could augment this feature by providing
the capability to simultaneously analyze multiple flights, and select among several surrogate
flight-plans, while considering not only potential conflicts and their resolvability, but also their
ensuing effects on sector workload and airline equity. In this manner, our model could be
utilized to provide both operational as well as policy guidelines for safely, economically, and

equitably routing and scheduling commercial air traffic.

The remainder of this paper is organized as follows. In Section 1, we discuss details of
the decision structure and the various modules pertaining to equity, workload, and collision
risk considerations for developing the proposed Airspace Planning Model. Two alternative
formulations of this problem are presented in Section 2 along with some preliminary results
that lend insights into their relative characteristics and solvability. In Section 3, we develop a
polynomial-time heuristic procedure that provides tight upper bounds to the problem. Com-
putational results are provided in Section 4 to demonstrate the efficacy of the proposed exact
and heuristic approaches using test problem instances based on actual airspace data that rep-
resent realistic scenarios of interest to the FAA. Finally, we conclude the paper in Section 5
by discussing various uses for this planning model, and provide recommendations for future

research.

1 Decision Structure and Modules for the Airspace
Planning Model

Consider a planning horizon H, and suppose that we are given a set of flights f = 1,..., F

covering this horizon that are relevant to a certain region of airspace. For each flight f, let

Py = {set of possible flight-plans p composed of departure and anticipated arrival
times, along with time-space trajectories and cruising altitudes, while

traversing designated routes between the corresponding origin-destination

pair}.

Note that there will typically exist some preferred departure time for each flight, along with
some alternative (discrete) departure schedules or departure slots. For each departure time,
given the existing time-dependent state of the Special-use Airspace restrictions or weather
patterns, one or more flight-plans corresponding to different trajectories, aircraft velocities,
and cruising altitudes could be generated using some commercial package, such as FliteStar
(Jeppesen Sanderson, Inc., 1996), or OPGEN (NAS Concept Development, 1998), for example.
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These models consider various details such as wind velocity and direction vectors, Special-use
Airspaces, and terrain obstacles, while optimizing the flight paths. Note that each trajectory
would be characterized as a (four-dimensional) time-space entity, and could represent traversals
between designated fixes or free-flight paths that conform with the restricted airspace usage
requirements. Given any such combination (f,p), f =1,...,F, p € Py, we can compute a cost
factor cy, for adopting plan p for flight f. This cost would reflect the related fuel expended,
ground-holding, and air delay costs for the particular flight-plan. Note also that in order to
ensure an equitable treatment of flights (as discussed subsequently in Section 1.1), FAA could
require each airline to submit plans for each of their flights (perhaps in a collaborative decision-
making framework) that differ adequately with respect to departure times according to some
established criteria. Such policies would need to be cognizant of any related gaming strategies

on the part of airlines.

Accordingly, defining the decision variables

Vf=1,.,F, peP;, (1)

1 if plan p € Py is adopted for flight f
€T =
T 0 otherwise

we can formulate a total system-based objective function to

F
minimize Z Z CrpT fp- (2)

f=1p€EPs

The constraints would include the selection of a plan for each flight as specified by

Y zp=1 Vf=1.,F (3)

pEPy
as well as certain equity, workload, and conflict resolution restrictions that are discussed next.
Note that the mix of selected flight-plans that are ultimately prescribed by the model would
entail certain estimated departure times and time-space trajectories. Naturally, in practice,
these estimations are subject to uncertainty, and variations in their values would need to be
addressed dynamically in real-time by air traffic controllers at airports. The proposed model
could also be re-run in a rolling horizon fashion at suitable frequencies as and when updated

information becomes available in order to revise decisions based on prior realizations.

1.1 Equity Constraints
Suppose that there are some @ airlines involved in the given mix of flights, indexed by a =
1,...;a. In the process of selecting flight-plans based on (2) and (3) (in addition to workload

and conflict resolution constraints as described in the subsequent sections), we would also like
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to achieve a degree of equity among these airline carriers. For each airline a = 1,...,@, let us

therefore define a utility-based measure of ineffectiveness

Uale)= Y gy, (4a)

(f:p) eAa

where
Ay = {(f,p),p € Py : flight f belongs to airline a},a =1,...,7, (4b)

and where the coefficients uy, are suitably defined, as specified in Remark 2 below, for example.
Accordingly, defining the equity variables zf and z¢ to respectively represent the lower and
upper limits of the range of variation for the ineffectiveness measures U,(z), @ = 1, ..., @, where
x¢ is restricted to be no more than some specified value v,, we can model equity via the following
mechanism.

Include the following restrictions within the constraints:

Include the following terms within the objective function:
(Minimize) ... + pe(x — zf) + poxs (7)

where y. is a (commensurate) penalty per unit of variation in the measures U,(z), a = 1, ..., @,
and p¢ is a (commensurate) penalty for the maximum incurred measure of ineffectiveness. Note
that we could take p¢ = 0 in case restricting z¢ < v, is itself sufficient. On the other hand,
in order not to overly restrict the problem, v, could be taken as the maximum tolerable limit
on any U,(z) value, and then the penalty p¢ would serve to reduce z¢ below v, to the extent
possible or desirable. The main idea here is to minimize the spread as well as the maximum
measure of ineffectiveness over the airline carriers. (Taking p, = z§ = 0 would correspond to

an alternative pure minimax strategy.)

Remark 1. The variables zf and z{ can be fixed at their respective bounds of 0 and v, if so
desired. In this case, each measure U,(z) would be simply restricted to be no greater than v,

for « = 1,...,@, and the implied lower bounding constraints in (5) may be omitted.



Remark 2. One possible ineffective measure U,(x) (as used in the present study) is the
average excess fuel and delay costs incurred by the airline «, for each a =1, ..., @. Letting m,
be the number of flights that belong to airline o, and denoting the excess fuel and delay costs

over the preferred plan for each flight to be given by

dfp =cpp —min{cs, :p€ Ps} Vf=1,..,F, pe P, (8)
we can define U,(z) in (4a) by letting

U =dsp/me V(f,p) € Ay, a=1,..., 0. 9)

Note that in order to ensure that an airline operating relatively more efficient equipment does
not subsidize another airline that operates less efficient equipment in this scheme, we could
consider the (excess) fuel cost component used in (8) to be relative to some uniform aircraft
efficiency characteristics. In either case, zf and z¢ can be treated as variables as in (5) and (6),

or be fixed as mentioned above in Remark 1.

1.2 Workload Constraints
Consider the total collection of flight-plans | J f=1,..r Pr- Jointly, these plans involve traver-

sals between certain pairs of fixes, as well as free-flight cruises between designated pairs of
points/fixes, at various specified altitudes. Let us consider the segmentation of the national
airspace into sectors as defined by FAA (these are generally nonconvex polygons lifted into the

vertical dimension, and stacked at low, high, and super-high altitudes), and let

S = {set of all sectors involved with the collection of the flight-plans U Pr}. (10)
f=1,..,F

Define the workload for any sector s € S at any point in time to be the number of aircraft
that are resident within that sector at the given instant of time. To characterize this workload
for each sector s € S, we can examine the occupancy durations of the various flights within
s over the horizon H. The model AOM of Sherali et al. (2000) provides this information by
constructing a Gantt chart of flight-plan occupancy intervals for each sector. Note that a
particular flight-plan that traverses through some sector s might be in conflict with another
flight-plan that occupies a different neighboring sector s’ as described in Section 1.3 below.
While the latter flight-plan might not physically occupy sector s, this situation does need
monitoring by both the sectors s and s’. Therefore, within the Gantt chart for sector s (and
likewise for sector s'), we include the interval of duration for the flight-plan in sector s’ over
which the conflict with the identified flight-plan in sector s persists. Hence, the workload

constraints accommodate such extraneous occupancy intervals as well. In practice, Air Traffic
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Control (ATC) operators routinely monitor several aircraft that are simultaneously traversing
their sectors. Of course, when the workload (simultaneous occupancy of a number of aircraft)
becomes too high, a potentially dangerous or untenable situation can arise. Hence, let us define

the following entities.

For each sector s € S, let ¢ = 1, ..., M, index the collection of maximal overlapping sets Cj;
of flight-plans (f,p), where an overlapping set of flight-plans is called maximal if it is not a

strict subset of another overlapping set. For example, examining Figure 1, we have M, = 4

maximal sets given by Cs1 = {(f1,p1), (f2,p2), (f3,03)}, Cea = {(f2,02), (f3,13), (fs,04)}, Ce3
= {(f3,p3), (f1,p4), (f6,p6)}, and Css = {(f5,P5), (f6,p6)}. Hence, we have,

Cs = {(f,p) : flight-plan (f,p) belongs to the i** maximal overlapping set for
sector s}, Vi=1,..., M, s €S. (11)

An efficient algorithm for determining these sets is described in Sherali and Brown (1994).

(f1,p1) H
(f2,p2) H
(f3,p3) [ ]
Flight-plans (fa.pa) [ ]
(f5:p5) [H
(f6D6) [ ]
Time over horizon i ]

Figure 1: Gantt Chart for Formulating Workload Constraints.

Note that it is possible that if (fi,p1) and (f2,p2) € Cy;, for some s and 4, then f; = f5, i.e.,

this pair corresponds to the same flight, although in this case, the plans would be distinct.

Let us now define the variable n, to represent the maximum number of overlapping flights
within each sector s € S. Note that ng is given by the largest number of flight-plans selected

from any of the maximal overlapping sets C;, t = 1, ..., My, i.e.,

Mg = Maximum;—y ., Z Lip (> (12)
(f,p)eCsi



because any other overlapping set is a subset of some maximal overlapping set. In our model,
we bound this variable ns; on a suitable interval [1,7,|, and furthermore, penalize its value
in the objective function using a penalty factor that increases nonlinearly in an appropriate
fashion with an increase in workload. The motivation here is that if the maximum number of
aircraft being simultaneously monitored in a sector increases from one to three, for example, the
associated penalty should likely more than triple. Moreover, there should exist some absolute
maximum number 7, of overlapping flights at any point in time, as determined by the capacity
of sector s. We demonstrate below how this workload and associated penalty structure can be

modelled without having to discretize time.

Toward this end, let us define the binary variables

VseSn=1,..mn,

1 if the maximum workload in sector s is n
Ysn = .
0 otherwise

and let u,, be the associated penalty for having y,, = 1. We assume that
Psa = Hs1, and pigj > 2pg(j—1) — Ps(j—2) YV J = 35y M. (13)
Note that the condition (13) implies that
0 < (o2 — ts1) < (Hs3 — ps2) < oo < (Msm, — Msme—1)- (14)
Figure 2 illustrates the implied convex nature of this penalty structure. Observe that by

Hsn

Figure 2: Illustration of a Convex Sector Workload Cost Structure.

enforcing ng > 1, we always incur a workload cost of at least u,;, even when no aircraft are

9



being scanned over the horizon. This is reasonable since there always exists a fixed monitoring
cost. More importantly, by avoiding a cost of zero corresponding to n, = 0, we permit greater
flexibility in considering practical workload costs that would satisfy (13). For example, we
might have 0 < pg = g = ... = pg, for up to some threshold number 7 of aircraft being
monitored, after which the costs might increase at an increasing rate as in (14). This is the
cost structure that arises in practice, and we shall assume that it holds true. Moreover, as
shown in Proposition 1 below, this structure precludes an explicit consideration of binariness
on the y-variables, enabling us to equivalently treat these variables as continuous. This penalty

structure for workload consideration may be incorporated in the model as follows, noting (12).

Include the following restrictions within the constraints:

> zp-n,<0 Vi=1,..,M,s€S (15a)
(fyp)ecsi
Ne=) MY VSES (15b)
n=1
Zysn:]- Vsels (150)
n=1
Y 20 Vn=1,.,7,, s€S. (15d)

Include the following term within the objective function:

s
(Minimize) ... + Z Z WsnYsn- (15€e)

s€S n=1
Note that both ng and ys,, V s,n, have been declared as continuous variables in (15). As
justified by the following result, the binary restrictions on y hold automatically at optimality
in our model, and hence, so do the integrality and the bounding restrictions on the variables

nsVses.

Proposition 1. Assume that (13) holds true, and consider any model that includes the term
(15e) in the objective function, and the restrictions (15a-d) in the constraints, where among
other stipulations, the z-variables are required to be binary valued. Then, given any z* as part
of an optimal solution to such a model, there exists an optimal completion for which n, = n},

Ysnx = 1, and ys, = 0V n # n}, where

n; = max < 1, i=r11,lﬁ?(Ms{(f;C T%,} ¢ is an integer in [1,7;], for each s € S. (16)
»P)ECsi
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Proof. Consider any s € S. Define fy(n,) as a piecewise linear function having breakpoints
at n = 1,...,ms with fy(n) = ps, Vn = 1,...,7. Note that by (14), f, is nondecreasing and
convex. Moreover, since the constraints (15b-d) compose n, as a convex combination of the
grid points {1,...,7,}, and the nondecreasing nature of the penalties prefers n, to be as small as
possible, we can take ny = n’ as given by (16). By feasibility, n* € [1,7,] and is integer valued.

Furthermore, by the convexity of f,, we have that

Hsnzr = fS(n:) < ZysnfS(n) = Zysn,usn (17)
n=1 n=1

for any feasible completion y to (15b-d), given n, = n}.

Hence, we have that y,,» = 1, and
Ysn = 0V n # ni is an optimal set of values for y,,, n = 1,...,7,, for each s € S. This

completes the proof. O

Remark 3. Observe that for each flight-plan combination (f,p), we can examine the number
of times z;, appears in the constraint set (15a) in order to assess the degree of workload
being generated by this flight-plan. This indicator could be used to prompt the generation of
alternative plans for a given flight f, based on the degrees of workload associated with the flight-
plans in its current set Py (in addition to related equity considerations). Furthermore, note
that the foregoing concept of workload focuses on the critical notion concerning the maximum
number of overlapping flights that are required to be monitored within each sector over the
horizon. Several alternative measures of workload could be investigated in this context. For
example, we could partition the horizon into suitable discrete time segments, and evaluate and
penalize the maximum number of overlapping flights that are required to be monitored within
each sector for each time segment using a structure similar to (15)-(16) that is replicated for
each such time segment. In addition, restrictions or penalties could be imposed based on the
occupancy durations and relative headings of the flights within each particular sector. Such

alternative considerations will be explored in future enhancements of the proposed model.

1.3 Conflict Constraints

For each sector, let us discretize the horizon into uniform time segments. The duration of each
such segment for any sector would depend on the sector’s conflict resolution capability. This
capability is to be reflected within the conflict constraints developed below, which impose the
restriction that for each sector, the maximum number of (permissible) conflicts that need to be
resolved for each time segment should not exceed 1. (Note that this complements the foregoing
workload restriction consideration.) For example, since air traffic controllers monitoring a New

York enroute sector are trained to be exposed to relatively larger workloads, and can handle
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a greater frequency of potential conflict resolutions, the duration of the time segments in the

corresponding sector could be relatively smaller.

In order to develop these conflict constraints, we must first be able to evaluate each pair
of flight trajectories for any potential conflicts. Furthermore, we must be able to determine
the sector occupancy of each flight trajectory, and consequently, detect when and over which
sectors intrusions leading to collision risk occur. This information is retrieved by running the
Airspace Occupancy Model (AOM) and the Aircraft Encounter Model (AEM) as described
in detail by Sherali et al. (2000). The sector occupancy information is derived from AOM
as discussed in Section 1.2 above. The model AEM performs a conflict analysis based on the
output of AOM. In a preprocessing step, AEM first identifies all possible situations in which
conflicts might arise between pairs of flight-plans that are not surrogates of the same flight,
along with the times during which such conflicts might occur. These potentially conflicting
flight pairs are then examined in greater detail as they traverse between designated way-points
(or breakpoints) along their trajectories during the identified critical intervals, in order to
detect and characterize any conflicts that actually occur. AEM reports the severity of each
such identified conflict, along with a detailed geometric analysis regarding the nature of the

conflict.

If any detected conflict is declared to be fatal in this analysis by virtue of an aircraft pen-
etrating the inviolable airspace surrounding another aircraft, we would immediately impose
a constraint in the present model that permits the selection of at most one such flight-plan.
Denoting FC as the set of such fatally conflicting pairs of flight-plans P = (f1,p1) and Q =
(f2, p2), we begin by stipulating that

zp+zg < 1 for all (P,Q) € FC. (18)

Other nonfatal conflicting situations are permitted to exist, provided that they can be resolved
by the ATC in the particular sector in which they occur. To reflect this resolution capability,
we formulate the following set of additional conflict constraints. Suppose that we construct
a conflict graph Gg(Ng, Ag) for each sector s and time segment ¢, where Ny, is the set of
nodes that represent all the flight-plans (f, p) that reside in sector s during time segment ¢, and
Ag is the set of edges such that if flight-plans P and @ are in conflict in sector s during this
time segment ¢, then A, includes an edge joining these corresponding nodes. If a flight-plan
residing in an adjacent sector conflicts with a flight-plan residing within s during the time
segment ¢, then we include such a flight-plan in N, with the corresponding conflict edge being
incorporated within Ay. Since we have explicitly excluded non-permissible conflicts via (18)

above, we can restrict our attention to recording via Ay just the permissible conflicts, that
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is, conflicts that can be resolved based on ATC capabilities. The resulting graph G, would

typically be a collection of (disjoint) components.

Figure 3: Illustration of a Conflict Graph Gy (Ng, As:)-

Figure 3 illustrates an instance of a conflict graph for some sector s and time segment ¢.
During this time segment, each pair of flight-plans (P, @), (P, R), (Q, R), and (Q, W) conflict
(at least one flight-plan of each pair penetrates the protective shell of the other). Note that
this could occur, as noted above for example, in a situation where flight-plans P, ), and R are
residing within sector s, whereas W is crossing a neighboring sector s’ while penetrating the
protective shell of the flight-plan Q).

We now impose the constraint that no more than one permissible conflict should occur for
each sector during each time segment. To model these constraints, for each sector, consider the
edges in Ay taken two at a time, and for each pair k, let Sy be the set of nodes (representing
flight-plans) at which this pair of edges is incident. |Sy| equals three or four, depending on
whether the pair of edges is adjacent (i.e., shares a common end-node) or not. The imposed

constraint would then be

Z zp < Skl — 1, (19)

PeSy
so that the identified pair of edges would be precluded from co-existing. As we are selecting
any two edges in Ay at a time, there are | Ag|(|As:| — 1)/2 inequalities of the type (19) for each
sector s, for each time segment ¢. For notational convenience, let us assume that the index &
runs contiguously for £k = 1, ..., K over the constraints (19) for all s, t. Observe that there will
likely be several redundant constraints established via this process. In particular, the following

result holds true.
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Proposition 2. Consider a pair of constraints of the type (19) corresponding to sets Si, and
Sk, such that Sy, C Sk,. Then (19) for Sk, is redundant (even in the continuous sense) and

can therefore be deleted.

Proof. Let us show that (19) for S, implies that (19) holds true for Sg,. Given that (19)
holds for Si,, we have that

Z Irp = Z Trp+ Z .CCPS |Sk1|—1+|Sk2—Sk1| = |Sk2|—1.

PGSk2 PESkl PGSk2 _Skl

This completes the proof. O

To illustrate (19) and Proposition 2, consider the example of Figure 3. For this conflict graph,

the six pairs of edges yield the following inequalities.

k Edge Pair Sk Corresponding Inequality (19)

1 (P,Q),(Q,R) {P,Q, R} Tp+ g+ TR <2 (20a)
2 (P,Q),(P,R) {P,Q, R} zp+ o+ TR <2 (20b)
3 (Q,R), (P, R) {P,Q, R} zp+ o+ TR <2 (20c)
4 (P,Q),(Q,W) {P,Q W} Tp+1Q + ow < 2 (20d)
i) (@, R), (Q, W) {Q, R,W} TQ+ xR+ aw <2 (20e)
6 (P,R),(Q,W) {P,Q,R,W} zp+zo+zr+aw <3 (20f)

Observe that the clique formed by the nodes { P, Q, R} produce the same inequality, and that as
predicated by Proposition 2, since S; C Sg, (20f) is implied by (20a). Hence, the nonredundant
inequalities produced by this conflict graph are given by (20a), (20d), and (20e).

In general, we have devised an efficient implementation scheme wherein constraints (19) are
first generated for all adjacent pairs of edges, recognizing that if a node-triplet forms a clique,
then the corresponding pairs of adjacent edges would generate duplicate constraints as in (20a-
c¢) above. The implemented procedure automatically detects and avoids the generation of such
duplicates. For all remaining pairs of edges, a constraint is generated only if it is not already
implied by the constraints generated from the adjacent pairs of edges based on Proposition 2
above. Furthermore, we also ensure that different conflict graphs do not produce duplicated
constraints, or constraints that are implied by previously generated inequalities of type (19).
This is accomplished by constructing the overall conflict graph G(N, A), where N is the set
of nodes representing all the flight-plans, and A is the set of arcs such that if flight-plans P
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and @ conflict (with resolvable severity) at any point in time in the horizon, then we have an
edge connecting P and (). By identifying pairs of edges in G’ and recording whether or not an
inequality of type (19) has been already generated or is implied for each such pair of edges,
we efficiently derive a set of nonredundant inequalities of this type. Let Kyr C K be the set
of indices k for which such nonredundant members of (19) for the corresponding sets Sy have

been explicitly generated and added to the model via this procedure.

2 Two Alternative Model Formulations for the

Airspace Planning Problem

In this section, we construct and computationally investigate two alternative model formu-
lations for the described airspace planning problem. The first of these, referred to as the
Airspace Planning Model 1 (APM1), incorporates the foregoing equity, workload, and conflict
constraints, along with the proposed objective cost terms, to yield the following mixed-integer

0-1 programming problem.

F 7is
APM1: Minimize Z Z CipTfp + Z Z PsnYsn + te(T — xf) + pixs (21a)
f=1 pEPs s€S n=1
subject to Z Tp=1 Vf=1.,F (21b)
pEPs
> zp-n,<0 Vi=1,.,M,s€S (21c)
(fyp)ecsi
Ny=) My Vs€S (21d)
n=1
> Yym=1 VseSs (21e)
n=1
i SUy(z) <zl Va=1,..,a (21f)
zp+xg < 1for all (P,Q) € FC (21g)
> zp < || — 1 for each k € Ky (21h)
PeSy
x binary, y > 0,z7 > 0,z < 7. (21i)
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2.1 An Alternative Representation of Conflict Constraints: Model
APM2

We can alternatively model the conflict constraints by defining a variable zpg for each distinct
edge (P,Q), in the conflict graph G for each sector s and time segment ¢, which takes on a
value of 1 if this conflict is permitted and 0 otherwise. Then, we would have a single conflict

constraint for each (s,t) that requires

Z zpg <1 VseS, Vtime segments ¢. (22a)
(P,Q)GAst
The new z-variables would then need to be related to the original z-variables via the following

constraints:
zpg > xp+xg—1,2p0 >0, V (P,Q) € As, V s € S, and time segments ¢. (22b)

This, in effect, would create a linearized version of essentially a quadratic model based on
equating zpg = zpzg, and would also permit the penalizing of different types of conflicts
differently in the objective function, if necessary. Note that we do not need the other constraints
of the type 2pg < zp and 2pg < z that are usually incorporated in such a linearization scheme,
since in the present context, we simply wish to enforce that zpg = 1 whenever zp = zg = 1, and
that no more than one z-variable takes on a value of 1. Although reformulation techniques of
the type described in Sherali et al. (1998) could be used to further strengthen the representation
of the resulting model based on (22), it would also increase its size, and so, we did not pursue
this option at this stage. Let us refer to this alternative formulation in which the constraints
(21h) in APM1 are replaced by (22a,b) as model APM2.

2.2 Preliminary Computational Comparison of APM1 and APM2.

Naturally, we expect model APM2 to become more favorable as the number of nonfatal con-
flicts in the model increases. To demonstrate the effect of the density of conflict graphs on
the performance of APM1 versus APM2, we generated the following two test sets. The first,
P75, contains fifteen flights, each having five surrogate flight-plans, traversing the Miami and
Jacksonville (ZMA-ZJX) Air Route Traffic Control Centers (ARTCC). The second scenario,
P260, contains 52 flights, each having five surrogate flight-plans, traversing the Salt Lake City
ARTCC (ZLC). For scenario P75, the run turned out to examine 290 conflict subgraphs, typi-
cally containing between 10 and 130 edges each, while for scenario P260, only 6 conflict graphs
were explored having 2-5 edges each. Each of these scenarios was solved on a SUN Ultra-1
workstation using CPLEX-MIP 6.5 (CPLEX Optimization, Inc., 1999). Table 1 demonstrates
the relative effectiveness of model APM1 versus APM2 for each of these cases. Note that for
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P75, APM2 efficiently handles the dense conflict constraints and provides a significant compu-
tational advantage over APM1. However, for P260, where the conflict constraints are not as
restrictive, APM2 is not as effective as APM1. This observation was evident in several other
similar test cases. In Section 4, we provide some additional insights into the efficacy of using

APM1 versus APM2 in solving the underlying airspace planning problem.

APM1 APM?2
Scenario | Branch-and- CPU Time | Branch-and- CPU Time
Bound Nodes (seconds) | Bound Nodes (seconds)
P75 44 14.76 35 4.23
P260 2271 55.41 2515 63.96

Table 1: Comparison of APM1 Versus APM2 for Two Different Conflict Density Scenarios.

3 Heuristic Solution Procedure

In this section, we prescribe a polynomial-time heuristic procedure for generating good quality
approximate solutions for the airspace planning problem. This heuristic is based on Geoffrion’s
(1967, 1969) scheme for implementing a depth-first implicit enumeration procedure via a partial
solution list PS that records the ordered sequence of restrictions imposed on the enumeration
tree branches along the path from the root node to the current active node. Whenever the com-
plement of any of these restrictions has been explored and fathomed, the particular restriction
is flagged to indicate this fact. In our implementation, we employ a Boolean variable to flag this
occurrence, setting it to FALSE when flagged, and TRUE otherwise. Within this framework,
we perform customized branching decisions, feasibility analyses, and logical tests in order to
exploit the structure of our problem. By imposing a fixed upper bound N on the number of
backtracking steps performed in this implicit enumeration process, we ensure only a polynomial
growth in the overall effort with respect to the size of the problem. In essence, this heuristic is
a prematurely terminated customized implicit enumeration procedure, and in concept, can be
similarly applied to other classes of problems that are modelled as 0-1 mixed-integer programs
using general related techniques as discussed in Nemhauser and Wolsey (1988), for example. A
flow-chart for the main routine executed by this heuristic is given in Figure 4, in which flight-
plans are iteratively selected for each flight, ensuring at each step that feasibility with respect

to conflict and equity constraints is maintained. The subroutine SUB, depicted in Figure 5,
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Init: Set backtracks = 0, max_backtracks = N = number of flights. Let the partial
solution list P.S be empty. Each item in PS will be a pair of elements: a
variable and a Boolean value.

Solve the LP relaxation; obtain the sdlution T and the reduced costs ¢. Set
Tfp < |Tpp) V f,p. Let F = {flight f: 3  Tp, = 0}. For each f € F, let
L; = {permissible surrogates of flight f}, and for all (f, p) such that Ty, = 1,
place (27,, TRUE) in PS in order of nondecreasing ¢,.

Perform logical tests on Ly for all f € F
adding all new variables fixed at 0 to the
end of PS with a FALSE Boolean value.

Stop: return
solution 7.

Let p(f) € argmin{cs, :p€ Ly} V f € F,
f* € argmin{csps), f € F}. Set
Zpep(s+) = 1, Temove f* from F, and add
(z pp(+), TRUE) to the end of PS.

L;=0
for any f € F7?

Call
Subroutine For each f such that |Ly| =1, say Ly = {p(f)},
SUB put Zsps) = 1 and add (z (), FALSE)
(Figure 5) to the end of PS and remove f from F.
Isx
Y infeasible to N
(21g-i)?

Figure 4: M AIN Routine for the Heuristic Procedure.
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MAIN

Routine

PS=10
or
backtracks = N?

Stop: no solution
returned.

backtracks < backtracks + 1. Y

Set Tp; = 0, change
(275, TRUE) to (Eﬁ,FALSE)
in PS, add f to F,
initialize Ly = {p:

(27, FALSE) ¢ PS}.

Last
element T, in %
PS TRUE?

Is

T, set to 17 Discard (z3;,FALSE)

from PS. Add p to Ly.

Add f to F, initialize Ly =
{p: (¢7,,FALSE) ¢ PS} U {p},
set T= = 0 and discard
(275,FALSE) from PS.

Figure 5: Subroutine SUB for the Heuristic Procedure.
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handles the backtracking details for this procedure.

To initialize the heuristic, we select a maximum allowable number of backtracking steps, NV,
and create a partial solution list PS for recording the history of pertinent actions executed
during the solution process. Each item in this list contains two elements. The first element is
an z-variable that is currently being fixed by the heuristic. The second element is a flag that
describes whether the variable was selected by a defined process to be set equal to 1 (TRUE), or
if it was necessarily set to 0 or 1 due to feasibility considerations based on previous restrictions
(FALSE). To provide an advanced start, the linear programming (LP) relaxation to APM1
(or APM2) is solved. Let ¢f, be the reduced cost coefficient for the variable zf, in this LP
solution, V (f,p). We use these reduced costs to guide the selection of plans for the various
flights. To record this selection process, we maintain a partial solution vector T, where Ty, is
initialized at 1 if its corresponding value in the linear programming relaxation is equal to 1, and
0 otherwise. For each such T, that is fixed at 1, we place xf, in P.S with a Boolean value of
TRUE. In our implementation, we arrange these items that are introduced concurrently within
PS in nondecreasing order of their corresponding ¢y, values to induce the procedure to retain

the best mix of flight-plans in its final solution.

Through the remainder of this heuristic, we keep track of the feasibility of the current partial
solution T with respect to the assignment constraints (21b), the fatal conflict constraints (21g),
the nonfatal conflict constraints (21h), and the maximum inequity constraint in (21i). The
heuristic maintains a running list of nonfatal conflicts that will occur within each conflict
subgraph based on the currently selected flight-plans. Each time an additional flight-plan is
selected, this list is updated for all conflict subgraphs that contain the selected flight-plan.
Similarly, for the equity restrictions, a list of aggregate inequities for the different airlines is
maintained and is updated with each chosen flight-plan. Using these lists, along with the list
of fatal conflicts, logical tests are performed after each solution augmentation step to reduce

the list of permissible surrogates for each flight.

The heuristic implicitly tracks (21b) in its main routine via a list L; that maintains the
permissible surrogates for flight f € F, where F = {f € {1, ..., F'} : flight f has not yet been
assigned a flight-plan}. When F = (), all flights have been assigned corresponding flight-plans,
and the heuristic successfully terminates. Otherwise, we examine all the sets Ly, for f € F,

and proceed based on one of the following three cases as applicable.

e Case 1. Ly = () for some f € F, implying that the current partial solution Z is infeasible.
The procedure must backtrack using the subroutine of Figure 5 and remove the previous

assignment(s) that led to this infeasibility (this process is described below).

20



e Case 2. |Ls| =1 for some f € F, implying that only one feasible choice of a flight-
plan remains for flight f. For each f such that |Lf| = 1, the lone remaining feasible
flight-plan for flight f is chosen, and is placed in PS with a FALSE Boolean value. This

augmentation of T is then examined for feasibility.

e Case 3. |Ly| > 1forall f € F. In this case, we select a feasible flight-plan corresponding
to an unassigned flight having the least ¢-value, and place it in P.S with a TRUE Boolean

value.

After each flight-plan assignment augments = in Cases 2 and 3, we must update the cur-
rent conflict and inequity lists, eliminate potential fatal conflicts, and revise Ly V f € F.
If infeasibility with respect to the previously selected flight-plans is detected in this process,
the procedure must backtrack. This main routine continues until a solution is found, or the

maximum permissible number of backtracking steps is executed.

Note that in our implementation, we have used the reduced costs ¢z, V (f,p) obtained from
the LP relaxation to guide the selection of flight-plans. Alternatively, we could have used the
actual costs cy, of the flight-plans themselves, or any other cost index. This would allow the user
to skip the LP solution phase altogether if necessary (the partial solution Z would be initialized
as a null vector in this case). However, using the LP-based information often provides a good
advanced start, and the reduced costs tend to provide a more accurate measure of the influence

of selecting flight-plans on the overall objective value.

The backtracking subroutine (SUB) examines the list PS to determine the most recent TRUE
assignment that is responsible for the infeasibility. The items in P.S that have a FALSE Boolean
value correspond to variables that have either been necessarily fixed at 0 by logical tests, or
have been set equal to 1 because no other flight-plan choices for that flight were available. The
procedure removes each such FALSE item from PS in a last-in-first-out fashion (given that the
last item was FALSE), by releasing the variables that were fixed at 0 to be considered again
by the procedure, and by unassigning the variables fixed at 1, until a TRUE item is found.
Once a TRUE item is found, the flight corresponding to this item is inserted into F, and the
corresponding flight-plan variable is fixed at 0 (since setting it to 1 resulted in an infeasibility).
This item therefore remains in PS, but now with a FALSE Boolean value. The overall logic of

this process is displayed in Figure 5.

We may extend this heuristic to additionally perform a limited number of branch-and-bound
steps to improve the quality of the solution obtained. Let N/ be the number of backtracking
steps executed by the heuristic. The extended version of this procedure provides APM1 (or
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APM2) with the derived heuristic solution as an incumbent upper bounding solution, and then
solves APM1 via CPLEX-MIP with a limit of N — N’ on the number of branch-and-bound
nodes enumerated. In our computational experiments, we will refer to the basic construction

heuristic procedure as HP, and to the foregoing enhanced heuristic procedure as EHP.

To assess the complexity of the heuristic HP, note that the initial step involves the solution
of the LP relaxation of the problem. Depending on whether we use APM1 or APM2, and
assuming that we employ a polynomial-time LP solver, let O(g) represent the complexity of
this step, where g denotes an associated appropriate polynomial in the size of the problem.
Furthermore, denoting by m, and m, the number of variables and restrictions, respectively, in
the model formulation, the complexity of the node analysis embodied in the process of Figure 4
(including the feasibility and the logical tests) is of order O(m,m,). Noting that the maximum
depth of a path in the enumeration tree is given by the number of x-variables, and that we
examine at most N (overlapping) paths, the number of nodes analyzed is bounded above by
O(m,N). Hence, for a fixed N, the heuristic HP is of (polynomial) complexity O(g +m2m,N).
(In the case of EHP, where LP relaxations might be solved at each node in the subsequent
enumeration process, this complexity is bounded above by O(m,N[g + m,m,|).) While this is
a worst-case performance analysis, the proposed heuristic consumes a moderately reasonable
effort in practice, while producing solutions within 0.01% of optimality as demonstrated in the

next section.

4 Computational Results

In this section, we study the performance of applying CPLEX-MIP Version 6.5 to the models
developed in Section 1, as well as evaluate the heuristic procedure developed in Section 3.
Toward this end, we generated a set of twelve test problems based on information derived from
the FAA-ETMS (Enhanced Traffic Management System) database over the Miami (ZMA) and
Jacksonville (ZJX) ARTCCs. The number of flights for these problems ranged from 50 to 200
in increments of 50, and instances were generated for each of these flight-mix scenarios using
3, 4, and 5 surrogate flight-plans for each flight. The flights chosen span the time interval
from 1:15 a.m. to 7:00 p.m. A distribution of the flight times is given in Figure 6, where each
histogram bar corresponds to a 30-minute time interval, and the height of the bar represents
the number of flights active at some point during that time segment. For each instance, the
cost of each flight-plan was given by its direct fuel cost that was computed using the Base of
Data (BADA) Eurocontrol Database. This database provides information on fuel costs as a
function of the flight altitude and aircraft speed, where both these parameters are specified

in the ETMS database. The sector workload costs (see Figure 2) were assumed to increase
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according to a defined quadratic function. The measure of inequity for each flight was given
by its normalized excess delay duration (see (9)), and the objective coefficients in (7) were
taken as appropriate cost-conversion factors. For these scenarios, we defined our SUA as a
cylindrical region that approximates the volume of enroute airspace around the Cape Canaveral
spaceport. The midpoint of each SUA enforcement duration interval was taken to be 10:00 a.m.
The surrogates for each flight were generated by equitably varying the departure time of the
flight, and then correspondingly determining the shortest-detour based rerouting of the flight
around the SUA, as necessary. Given this generated mix of flight-plans, the models AOM and
AEM of Sherali et al. (2000) were run to respectively ascertain sector occupancy durations, and
collision risk intervals along with their associated severity levels. This information was then
used to generate the corresponding workload and collision resolution management constraints.
On an IBM Pentium III 333 computer using MATLAB 5.3, the effort required to generate
this information via AOM and AEM ranged from roughly 20 minutes for problems having 150
total flight-plans, to two hours for problems having 1000 total flight-plans. (This effort can be
significantly reduced by using a complied language (such as C/C++) as opposed to MATLAB.)

Number of Active Flights

Q
Q
{LN

Figure 6: Relative Time Distribution of the Selected 200 Flights.

23



Scenario: APM1: APM2:

Flights Surrogates | Nodes CPU Time | Nodes CPU Time | Obj Value
50 3 0 0.71 0 0.99 175852.64
50 4 4 0.9 4 1.33 173262.40
50 5 3 1.14 3 1.63 172070.34
100 3 3 1.24 3 1.71 314482.50
100 4 6 1.75 6 2.23 309787.65
100 5 218 18.19 218 24.68 307920.21
150 3 35 4.32 34 7.87 480031.62
150 4 20 6.28 21 10.41 472970.44
150 5 o977 252.1 750 367.09 470370.34
200 3 49 17.89 4648 585.32 623677.20
200 4 3755 1176.71 3846 1523.7 611747.83
200 5 485 339.87 2208 2046.9 607498.12

Table 2: Comparison of APM1 Versus APM2.

First, we examined the efficacy of model APM1 versus model APM2. For each of the twelve
scenarios, we recorded the number of branch-and-bound nodes enumerated (Nodes), the CPU
time in seconds (CPU Time), and the objective function value (Obj Value). Since this problem
set was based on actual recorded flight data, few conflicts occurred between flight-plans. As
in Table 1, we would expect APM1 to outperform APM2 on such a data set, and Table 2
confirms this anticipation. Although APM1 exhibits only a slight computational advantage
over APM2 in most cases, as demonstrated by the 200 flight scenario instances having three
or five surrogate flight-plans per flight, APM1 occasionally greatly outperforms APM2. Note
also that the optimal objective function value decreases somewhat as more surrogates become

available for each set of three instances having 50, 100, 150, and 200 flights, respectively.

Next, we considered the heuristic developed in Section 3. For each of the data sets described
above, we ran the variants HP and EHP and obtained their solutions, recording their execution
times and the number of backtracking steps performed. Model APM1 was selected for deriving
the LP-based starting solution and the reduced costs for HP, and for implementing the limited
branch-and-bound exploration for EHP. The solution provided by HP is within 1 percent of
optimality for 9 out of the 12 test cases. (Here the % optimality is measured as the percentage
gap between the objective value of the best solution found and the optimal solution value
recorded in Table 2.) In the first test case, the linear programming solution turned out to be
integer-valued, and thus the heuristic terminated with this optimal solution in its initialization
phase. Note that the number N’ of backtracking steps actually performed prior to termination

is usually very small, and hence, the possibility of an unsuccessful termination due to the
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HP: EHP:
Flights Surrogates | % Optimal CPU Time N’ | % Optimal CPU Time
50 3 0 0.01 0 0 1.01
50 4 0.01 0.05 0 0 1.33
50 ) 0.24 0.07 0 0 1.54
100 3 2.64 0.39 1 0 2.04
100 4 0.60 0.95 1 0 2.64
100 ) 0.42 1.57 30 | 3.87x 1073 11.49
150 3 2.48 3.24 1 0 7.41
150 4 0.26 9 1 0 17.02
150 ) 7.58 7.9 9 |578x1073 166.41
200 3 0.63 20.14 1 0 42.36
200 4 0.39 40.02 2 19.15x1073 209.64
200 ) 0.37 76.64 1 |7.06x10°* 287.48

Table 3: Effectiveness of the Proposed Heuristic Procedures.

maximum allowable backtracking limit was never imminent. The enhancement EHP provided
an optimal solution in 8 out of the 12 test cases, and provided a solution within 0.01% of
optimality in the other 4 test cases. These results show that EHP is a promising alternative
to solving the mixed-integer programming model to optimality, and might be especially useful
for large instances of the airspace planning problem. We comment here that although HP
can also be used to find an incumbent solution for the exact branch-and-bound method, our
experimental experience revealed that the time consumed in executing this heuristic offsets the

gains achieved by utilizing this initial upper bound.

Finally, we demonstrate the usefulness of the proposed airspace planning model as a strategic
planning tool for the FAA. In particular, we explore the sensitivity of the solution provided by
the model to changes in the radius of the SUA formulated around the spaceport, and to the
duration of the launch-window during which the SUA is activated. To illustrate the effect of
these parameters, we chose the set of data containing 100 flights. First, we generated three
surrogate flight-plans for each flight based only on varying the departure times (assuming no
SUA restrictions), and we ran APM1 to determine an optimal set of flight-plans for this problem
instance. Using the resulting optimal 100 flight-plan data set, we determined the number of
these flight-plans that would intersect SUAs having different radii and launch-window durations.
Specifically, we examined radii of R (the original radius of the SUA), R/2, and R/4, and we
varied the launch-window durations between 0 and 12 hours in intervals of 2 hours. The results
of this experiment are displayed in Figure 7. By cutting the SUA radius in half, the number
of flights impacted by the SUA is reduced by about 25%, while reducing the SUA radius to
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Figure 7: Number of Flights Impacted by the SUA for Different Radii and Launch-Window
Durations.

one-fourth its original size cuts the number of flights impacted by about 33%. Also, note that
increasing the duration of the launch-window for any given SUA radius tends to affect the
number of impacted flights almost linearly until the duration reaches 6 hours. After this point,
the number of flights impacted by the SUA is relatively insensitive to an increase in the launch-
window duration. This is due to the nature of the particular data set used whereby most of the
100 flights considered have crossed the SUA region within the six hour time-window duration.
In general, the number of flights impacted would depend on the space-time distribution of

flights, as well as on the SUA volume, timing, and activation duration.

We then evaluated the effect of these parameters on the total extra system cost as given by
APMI1. For this experiment, we examined the cases of launch-windows having durations of 4,
5, and 6 hours, and generated problem instances having SUA radii equal to R, 3R/4, R/2,
and R/4. The flight data used was composed of the 100 flight-plan scenario described above,
modified by generating three surrogate flight-plans based on adjusting the departure times and
by rerouting the aircraft via efficient detour paths around the SUA. The total extra system
cost for any instance based on a specified SUA enforcement is thus given by the difference
between the optimal objective function value of this instance minus the cost of the system
with no SUA enforcement. The results of this experiment are depicted in Figure 8. Note that
the approximate quadratic increase in extra system cost due to an increase in SUA radius is
indicative of a direct proportionality between the extra system cost and the SUA area. A
best quadratic fit for this output was determined via the equation C' = §,r%, where C is the

total extra cost of the scenario, r is the fraction of the radius R of the SUA, and f; is a
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Figure 8: Total Extra System Cost Due to SUAs having Different Radii and Launch-Window
Durations.

suitable constant of proportionality for a launch-window of duration ¢, for ¢ = 4,5,6. The
respective values of (8, were obtained as 8, = $49278.3, 35 = $55643.7, and g = $65444.4. The
goodness-of-fit R2-statistic values for the cases of 4, 5, and 6 hour launch-window durations
were computed as 0.991, 0.988, and 0.990, respectively, indicating that these results are very
well described by the stated quadratic equations.

5 Conclusions

In this paper, we have proposed 0-1 mixed-integer Airspace Planning Models (APM1 and
APM2) to provide guidelines in a collaborative decision-making process between the FAA and
commercial airlines. These models seek to select flight-plans that satisfy various equity, work-
load, and safety considerations under different airspace scenarios. Computational results in-
dicate that model APM1 is preferable in most instances of the airspace planning problem,
although the alternative model APM2 might become more effective when several nonfatal con-
flicts occur between flight-plans. We have also devised an effective (polynomial-time) heuristic
technique that was shown to identify optimal solutions for 8 out of 12 instances of a particu-
lar set of real test problems, while finding feasible solutions having objective function values
within 0.01% of the corresponding optimal value for the remaining 4 instances. Further mod-
elling refinements of the workload, equity, and collision risk issues, as well as more extensive

computational tests are recommended for future research.
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The proposed model can be utilized in one of two ways.

(a) Air Traffic Management: Generator of a suitable mizx of flight-plans for a set of flights.
In this role, the model can be coordinated with NASPAC, a large-scale simulation model for
analyzing airport operations related to a given set of flight-plans, by using the latter simulation
package to evaluate in more detail the airport operations pertaining to the prescribed solution

suggested by the model.

(b) Policy Evaluator. Various what-if scenarios can be evaluated by policy/decision-makers in
formulating operational guidelines. In particular, the following types of investigations can be

considered.

(i) Alternative restrictions with respect to volume and duration on the cordoning of airspace
around the RLV spaceport during launches could be evaluated with respect to this model. Dif-
ferent airspace restrictions would yield different values of cost coefficients in the model based
on fuel and delay computations. In addition, one might develop certain measures of safety, and
incorporate appropriate penalties in the objective cost coefficients to reflect the relative safety
of trajectories with respect to RLV operations. The effect of launch timings and frequencies

could also be studied in this context.

(ii) The effect of various ATC maximum sector workload policies can be evaluated with respect
to their influence on system performance, along with associated costs. Alternative measures of,

and controls on, workload can also be investigated.

(iii) The effect of alternative flight-plans, or protocols/directives for generating such flight-plans
can also be evaluated using this model. In fact, this model can itself serve to evaluate the effi-

cacy of various flight-plan generation programs.

(iv) Similar to (b), different aircraft separation regulations imposed by FAA might yield differ-
ent interpretations on what poses a “conflict.” These policies could be evaluated by translating
them into appropriate constraints of the type (15a-c) and examining their effect on the model

solution.

Hence, the model can be used both in a tactical decision-making mode as an Air Traffic Man-

agement tool, as well as for formulating strategic guidelines and policies.

Acknowledgment:

This research has been supported by the National Science Foundation under Grant Numbers
DMI-9812047 and DMI-0085640, and by a Federal Aviation Administration Grant under the
National Center of Excellence for Aviation Operations Research (NEXTOR) program. The
authors gratefully acknowledge the support provided by the FAA Office of Commercial Space

28



Transportation (AST), and in particular, the guidance provided by Kelvin Coleman. Thanks
are also due to Mr. C. Quan for his assistance with some of the computations, and to two

anonymous referees and an Associate Editor for their detailed and constructive comments.

References

ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION (AST),
“1998 LEO Commercial Market Projections”, Federal Aviation Administration, May, 1998.

D. BERTSIMAS AND S.S. PATTERSON, “The Air Traffic Flow Management Problem with
Enroute Capacities”, Operations Research, 46, 406-422 (1998).

D. BERTSIMAS AND S.S. PATTERSON, “The Traffic Flow Management Rerouting Problem
in Air Traffic Control: A Dynamic Network Flow Approach”, Transportation Science, 34,
239-255 (2000).

CPLEX OPTIMIZATION, INC., Using the CPLEX Callable Library, Version 6.5., 1999.

H. ERZBERGER, B.D. MCNALLY, AND M. FOSTER, “Direct-To Tool for Enroute Con-
trollers”, ATM °99: IEEE Workshop on Advanced Technologies and their Impact on Air
Traffic Management in the 21st Century, Capri, Italy, September 26-30, 1999.

J.M. FALKER, “Conflict Analysis of Air and Space Modes of Transportation”, Phase III In-
terim Report, NEXTOR Research Report RR-99-05, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 1999.

J.M. FALKER, “Integration of Reusable Launch Vehicles into Air Traffic Management”, NEX-
TOR Research Report RR-99-05, Massachusetts Institute of Technology, Cambridge, MA,
1999.

FEDERAL AVIATION ADMINISTRATION/EUROCONTROL, “A Concept Paper for Sepa-
ration Safety Modeling”, Technical Report, March, 1998.

A.M. GEOFFRION, “An Improved Implicit Enumeration Approach for Integer Programming”,
Operations Research, 17, 437-454 (1969).

AM. GEOFFRION, “Integer Programming by Implicit Enumeration and Balas’ Method”,
SIAM Review, 9, 178-198 (1967).

JEPPESEN SANDERSON INC., FliteStar User Manual (Mentor Plus), October, 1996.

29



K.S. LINDSAY, E.A. BOYD, AND R. BURLINGAME, “Traffic Flow Management Modeling
with the Time Assignment Model”, Air Traffic Control Quarterly, 1, 255-276 (1993).

B.D. MCNALLY, R.E. BACK, AND W. CHAN, “Field Test Evaluation of the CTAS Con-
flict Prediction and Trial Planning Capability”, AIAA Guidance, Navigation, and Control
Conference, Boston, MA, August 10-12, 1998.

NAS CONCEPT DEVELOPMENT (ASD), “RAMS-OPGEN Integration Activities: Fiscal
Year 1998”, Federal Aviation Administration, Internal FAA/NASA Document, Washing-
ton, DC, 1998.

G.L. NEMHAUSER AND L. WOLSEY, Integer and Combinatorial Optimization, John Wiley
& Sons, Inc, New York, NY, 1988.

A.R. ODONI, J. BOWMAN, D. DELAHAYE, J.J. DEYST, E. FERON, R.J. HANSMAN, K.
KHAN, J.K. KUCHAR, N. PUJET, AND R.W. SIMPSON, “Existing and Required Mod-
eling Capabilities for Evaluating ATM Systems and Concepts”, Final Report: Modeling
Research Under NASA /AATT, International Center for Air Transportation, Massachusetts
Institute of Technology, March, 1997.

H.D. SHERALI, W.P. ADAMS, AND P.J. DRISCOLL, “Exploiting Special Structures in Con-
structing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems”, Operations Research,
46, 396-405 (1998).

H.D. SHERALI AND E.L. BROWN, “A Quadratic Partial Assignment and Packing Model
and Algorithm for the Airline Gate Assignment Problem”, in: DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, Quadratic Assignment and Related
Problems, 16, 343-364 (1994).

H.D. SHERALI, J.C. SMITH, A.A. TRANI, AND S. SALE, “National Airspace Sector Occu-
pancy and Conflict Analysis Models for Evaluating Scenarios under the Free-flight Paradigm”,
Transportation Science, 34, 321-336 (2000).

30



Table Legends

Table 1. Comparison of APM1 Versus APM2 for Two Different Conflict Density Scenarios.
Table 2. Comparison of APM1 Versus APM2.

Table 3. Effectiveness of the Proposed Heuristic Procedures.



Figure Legends

Figure 1. Gantt Chart for Formulating Workload Constraints.

Figure 2. Illustration of a Convex Sector Workload Cost Structure.

Figure 3. Illustration of a Conflict Graph G (N, Agt)-

Figure 4. MAIN Routine for the Heuristic Procedure.

Figure 5. Subroutine SUB for the Heuristic Procedure.

Figure 6. Relative Time Distribution of the Selected 200 Flights.

Figure 7. Number of Flights Impacted by the SUA for Different Radii and Launch-Window
Durations.

Figure 8. Total Extra System Cost Due to SUAs having Different Radii and Launch-Window

Durations.
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Figure 1: Gantt Chart for Formulating Workload Constraints.
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Figure 2: Illustration of a Convex Sector Workload Cost Structure.



Figure 3: Illustration of a Conflict Graph G (N, Ast)-



Init: Set backtracks = 0, max_backtracks = N = number of flights. Let the partial
solution list P.S be empty. Each item in PS will be a pair of elements: a
variable and a Boolean value.

Solve the LP relaxation; obtain the sdlution T and the reduced costs ¢. Set
Tfp < |Tpp) V f,p. Let F = {flight f: 3  Tp, = 0}. For each f € F, let
L; = {permissible surrogates of flight f}, and for all (f, p) such that Ty, = 1,
place (27,, TRUE) in PS in order of nondecreasing ¢,.

Perform logical tests on Ly for all f € F
adding all new variables fixed at 0 to the
end of PS with a FALSE Boolean value.

Stop: return
solution 7.

Let p(f) € argmin{cs, :p€ Ly} V f € F,
f* € argmin{csps), f € F}. Set
Zpep(s+) = 1, Temove f* from F, and add
(z pp(+), TRUE) to the end of PS.

L;=0
for any f € F7?

Call
Subroutine For each f such that |Ly| =1, say Ly = {p(f)},
SUB put Zsps) = 1 and add (z (), FALSE)
(Figure 5) to the end of PS and remove f from F.
Isx
Y infeasible to N
(21g-i)?

Figure 4: M AIN Routine for the Heuristic Procedure.




MAIN

Set Tp; = 0, change
(275, TRUE) to (Eﬁ,FALSE)
in PS, add f to F,
initialize Ly = {p:

(27, FALSE) ¢ PS}.

Routine

PS=10
or
backtracks = N?

Stop: no solution
returned.

backtracks « backtracks + 1.

Last

element T, in
PS TRUE?

Is
T ?
T5; set to 17

Discard (z3;,FALSE)
from PS. Add p to Ly.

Add f to PS, initialize Ly =

{p: (a:?p,FALSE) ¢ PS} U {p},

set T+ = 0 and discard
(275,FALSE) from PS.

Figure 5: Subroutine SUB for the Heuristic Procedure.
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Figure 6: Relative Time Distribution of the Selected 200 Flights.
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Figure 7: Number of Flights Impacted by the SUA for Different Radii and Launch-Window

Durations.
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Figure 8: Total Extra System Cost Due to SUAs having Different Radii and Launch-Window
Durations.



