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Recently, the Federal Aviation Administration (FAA) and the major airlines
in the U.S. have embraced a new initiative to improve Air Traffic Flow Man-
agement. This initiative, called Collaborative Decision Making (CDM), is based
on the recognition that improved data exchange and communication between
the FAA and the airlines will lead to better decision making. In particular, the
CDM philosophy emphasizes that decisions with a potential economic impact
on airlines should be decentralized and made in collaboration with the airlines
whenever possible. This dissertation is motivated by the fairness issues that arise
in the resource allocation procedures that have been introduced under CDM.

While the fair allocation of resources has been and continues to be a major
concern in the procedures that have been developed under CDM, its interpreta-

tion is oftentimes left implicit. In this dissertation, we introduce and evaluate



several potential approaches to fair allocation, using both multi-objective opti-
mization models and cooperative game theory models. Subsequently we study
how the dynamic nature of flow management impacts fairness, and introduce
methods that may be used to manage the allocation of resources in this envi-
ronment. In addition, we also consider the opportunities for increased airline
control in a CDM-based environment. In particular, we study the potential ben-
efits that can be obtained by the introduction of a framework in which airlines

dynamically trade resources.



FAIR ALLOCATION METHODS IN
AIR TRAFFIC MANAGEMENT

by

Thomas W.M. Vossen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2002

Advisory Committee:

Professor Michael O. Ball, Chairman/Advisor
Professor Gnana Anandalingam

Professor Michael C. Fu

Dr. Robert L. Hoffman

Professor Paul M. Schonfeld

Professor H. Peyton Young



© Copyright by
Thomas W.M. Vossen

2002



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Michael O. Ball. It
is safe to say that this dissertation would not have been written
without his constant support, encouragement, guidance, and (most

of all) patience. It is difficult to express just how much I appreciate

all his help.

I am also indebted to the other members of my committee: Dr.
Gnana Anandalingam and Dr. Paul Schonfeld for their many valu-
able suggestions and comments, Dr. H. Peyton Young for taking the
time to discuss our initial forays into fairness, Dr. Michael Fu for
his support throughout my stay at the University of Maryland, and
Dr. Robert Hoffman for introducing me to the many intricacies of

air traffic flow management during those late night Seil Lab sessions.

I should also thank all the office mates who have helped and had

to put up with me over the years, from Andrew Vakhutinski and

i



Heshmat (sorry Rosa) Beirjandi to the Nextor office gang: Bala
Chandran, Jason Burke, and Narender Bhogadi. I especially want
to thank Guglielmo “Giullare” Lulli and Chien-Yu Chen, for being
great guys and great friends. Thanks also to my fellow Dutch ex-
patriates Manny Blits and Frank Groen, for keeping me (at least
somewhat) sane along the way. And I shouldn’t forget “good old”

Toon Bruining, for keeping in touch through the years.

Finally, I would like to thank my family: Diana, Wilbert, and “Oos
Mam en Oos Pap”. You have always been there when I needed you.

I love you and I miss you.

This work was supported in part by the U.S. Federal Aviation Ad-
ministration through NEXTOR, the National Center of Excellence

for Aviation Operations Research.

1l



TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

1 Introduction
1.1 Motivation . . . . . . . . . .

1.2  Outline and Research Contributions . . . . . . . . . . . . . . ...

2 Air Traffic Management
2.1 Air Traffic Control vs. Air Traffic Flow Management . . . . . . .
2.2 Air Traffic Flow Management Initiatives . . . . . ... ... ...
2.2.1 Airline Response . . . . . . . ... L
2.2.2 Imteraction . . . . . .. . ... L

2.3 DIScussion . . . . ...

3 Towards Decentralized Air Traffic Management
3.1  The Future of Air Traffic Management . . . . . . .. .. .. ...
3.1.1 Free Flight . . . . . .. ... ... .

3.1.2  Collaborative Decision-Making . . . . . . . . .. ... ...

v

vii

viii

12
16
18
20



3.2

3.3

Fair

4.1

4.2

4.3
4.4
4.5

Fair

5.1

5.2

9.3

Decentralized Ground Delay Programs . . . . .. ... ... ... 28

3.2.1 Models for the Ground Holding Problem . . . . . ... .. 28
3.2.2 Airline Decision-Making during GDPs . . . ... ... .. 31
3.2.3 Ground Delay Programs under CDM . . . . .. ... ... 32
Discussion . . . . . . ... oo 37
Slot Allocation 43
Introduction . . . . . ... Lo 44
4.1.1 Model Description . . . . .. ... ... ... ....... 45
Delay-Based Slot Allocation . . . . . ... ... ... ....... 46
4.2.1  Multi-Objective Optimization Methods . . . . . . ... .. 46
4.2.2  Cost-Sharing Methods . . . . . ... ... ... ... ... 49
4.2.3 Issues . . ..o 55
Axiomatic Slot Allocation . . . . .. .. .. ... ... ... ... 60
Empirical Analysis . . . . ... ... .. 71
Discussion . . . . . . . . e 76
Slot Allocation: Equity As Near May Be 77
Background . . . ... ..o oo 78
5.1.1 Apportionment Problems . . . . . ... .. ... .. ... .. 78
5.1.2  Balanced Just-In-Time Scheduling Problems . . . . . . .. 80
5.1.3 Approach . . . .. ... 82
Managing Flight Cancellations and Delays . . . . ... ... ... 84
5.2.1 Model Formulation . . . .. ... ... .. ... ...... 86
5.2.2  CompariSon . . . . . . . ... 90
Managing Flight Exemptions. . . . . . . ... .. ... ... ... 96



5.3.1 Model Formulation

5.3.2  Comparison

5.4 Using Alternate Fairness Standards

5.4.1

5.5 Discussion

Empirical Results .

6 Slot Trading during Ground Delay Programs

6.1 Introduction . . . ... ..
6.1.1 Compression as Mediated Bartering
6.1.2 Model Description
6.2 Background . .. .. ...
6.3 Approach . .. ... ...
6.4 Case Studies . . . . . ...
6.4.1 On-Time Performance
6.4.2 Passenger Delay Costs
6.5 Discussion . . . . ... ..

7 Conclusions

Proofs
A.1 Proof of Proposition 4.3.3
A.2 Proof of Theorem 4.3.8
A.3 Proof of Theorem 5.2.1
A.4 Proof of Theorem 5.3.1

B Slot Trading Model Results

BIBLIOGRAPHY

vi

114
115
117
119
121
126
132
133
144
149

151

157
157
160
163
165

167

174



5.1
5.2
5.3
5.4
2.5

B.1
B.2
B.3
B.4
B.5
B.6

LIST OF TABLES

Problem Characteristics
Delay reduction for Scenario EWR, 01/01/96(1)
Delay reduction for Scenario EWR, 01/01/96(2)
Delay reduction for Scenario EWR, 01/02/96
Delay reduction for Scenario LAX, 01/01/97

Formulation 1
Formulation 1

Formulation 2

Formulation 3

Formulation 3

(OV
(OV
(OV
Formulation 2(OV:
(OV
(OV

: Maximize number of flights moved up)
: Maximize number of flights moved down) . .
: Maximize number of flights moved up)
Maximize number of flights moved down) . .
: Maximize number of flights moved up)

: Maximize number of flights moved down) . .

Vil

. 168
. 169
. 170
171
172
. 173



LIST OF FIGURES

2.1 ATM Components . . . . . . . . .. .. .. 9
2.2 Operations Level Interactions between FAA and airlines . . . . . 19
3.1  Assignment problem formulation of the static, deterministic GHP 30
3.2 The Ration-By-Schedule Procedure . . . . . ... ... ... ... 34
3.3 The Compression Procedure . . . . ... ... ... ........ 36
3.4 Compression Example. . . . ... ... . 000000 37
4.1 Example: Airline-based Delay Allocation . . . . . ... ... ... 48
4.2  Example: Shapley value . . . . .. ... . 0000000 55
4.3 Example: Shapley value, Consistency . . . . . .. ... ... ... 57
4.4  Example: Shapley value, Composition. . . . . .. .. .. .. ... 58
4.5 Interpretation of Decomposition Axiom . . . . ... .. ... ... 64
4.6 Proportional Random Assignment Mechanism . . . . . ... ... 70
4.7 Delay Comparison : Logan Airport, Boston. . . . . . . . .. ... 72
4.8 Delay Comparison : LaGuardia Airport, New York . . . .. ... 72
4.9 Delay Comparison : Logan Airport, Boston. . . . . .. ... ... 73
4.10 Example: OAG Schedule Scenarios . . . .. ... ... ... ... 74
4.11 Delay Differences by Scenario . . . . .. .. ... ... ... ... 75

viil



4.12

5.1
5.2
5.3
5.4
2.5
5.6
2.7
0.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20
5.21
5.22

Delay Distribution using Proportional Random Assignment . . . . 75
Slot allocation by apportionment . . . . ... .. ... ...... 79
IP formulation of the PRV problem . . . .. ... ... ... ... 81
Share deviation in GDPs . . . . . . . ... ... L. 83
Demand changes from flight cancellations and delays . . . . . .. 85
IP formulation of the slot allocation problem . . . . . . ... ... 86
Alternative IP formulation of slot allocation problem . . . . . .. 89
Greedy Algorithm for slot allocation problem . . . . .. ... .. 90
Comparison: Ideal Position vs. Total Deviation . . . .. ... .. 91
Comparison: Compression vs. Greedy Procedure. . . . . ... .. 93
Exemption Impact : Logan Airport, Boston . . . ... ... ... 97
Exemption Impact: San Francisco Airport . . . . . .. ... ... 98
Exemption Impact: O’Hare Airport, Chicago . . . . . . . .. . .. 98
Modified Greedy Algorithm . . . . . .. ... ... ... ..... 101
Optimization Model results : Logan Airport, Boston . . . .. .. 103
Greedy Procedure results : Logan Airport, Boston . . . . . . . .. 104
Delay Distribution Impact: Logan Airport, Boston . . ... ... 105
Distribution of Delay Changes by Airline: Logan Airport, Boston 106
Distribution of Delay Changes by Aircraft Size: Logan Airport,

Boston . . . . . . . 107
RBS vs. Proportional Random Assignment Approximation . . . 110
RBS vs. Proportional Approximation . . . . . . ... .. ... .. 111
RBS vs. Proportional Approximation: All Flights . . . . . .. .. 111
RBS vs. Proportional Approximation: General Aviation Flights . 112

X



6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15

Airline GDP behavior at O’Hare Airport, July 2000 . . . . . . .. 115

“Default” Offers . . . . . . . . . . .. .. .. 118
Offer associated with cancelled or delayed flights . . . . . . .. .. 118
Airline preferences . . . . . .. .. ... L. 120
Counterexample Data.. . . . . . .. ... ... ... ... ..... 123
IP formulation for Mediation Problem . . . .. ... .. ... .. 127
Delay Cost Structure . . . . . . . . . ... ... ... .. ..... 129
Flight Assignment Structure . . . . . . .. .. .. ... .. .... 130
IP formulation for Restricted Mediation Problem . . . . ... .. 131
IP formulation for Mediation Problem with On-time Performance

Objective . . . . . . . 134
On-time Performance Improvements from Slot Trading . . . . . . 137
Impact of Objective Function Choice . . . . ... ... ... ... 138
On-time Performance Improvements by Aspiration Levels . . . . . 144
Potential Reduction in Passenger Delays . . . . . ... ... ... 147
Reduction in Passenger Delay Costs using Slot Trading Potential

Reduction in Passenger Delays . . . . . ... ... ... ... .. 148



FAIR ALLOCATION METHODS IN
AIR TRAFFIC MANAGEMENT

Thomas W.M. Vossen
February 4, 2003

This comment page is not part of the dissertation.

Typeset by IMTEX using the dissertation class by Pablo A. Straub, University of

Maryland.



Chapter 1

Introduction

In the last several decades, the growth in air traffic has been dramatic. From a
relatively minor industrial sector, air transportation has evolved into a branch
of the economy which currently accounts for 6% of the Gross Domestic Prod-
uct in the United States, and employs approximately 1.5 million people ([25]).
Moreover, there are no signs that this growth is slowing down. Indeed, current
projections expect air traffic to grow at an annual rate of 3% to 5% over the
next 15 years.

Unfortunately, however, the increase in air traffic at the major airports in
the United States has vastly outgrown the increase in airport resources. As a
consequence, the level of congestion has risen consistently, leading to increased
delay during peak periods of travel. These delays result in substantial costs:
in 1995, the FAA estimated that the cost of delays to the airlines was approx-
imately $2.5 billon in operating expenses ([25]). As such, it is clear that the
imbalance between stagnating capacity and increasing demand has (and will
have) an enormous impact on the performance of the air transportation system.

Not surprisingly, the current level of delays and projected increase in demand



have led to a number of initiatives that aim to alleviate congestion. These initia-
tives are both varied and numerous. Some airports are considering increases in
capacity by adding runways. Other initiatives consider the potential of demand
management measures, such as the use of auctions as LaGuardia Airport and
Congressional regulation that would allow airlines to coordinate schedule reduc-
tions at certain airports ([57]). In addition, the FAA has implemented (and
is considering) procedural changes during the management of daily operations
which aim to increase flexibility.

So far, these efforts to reduce congestion have perhaps had their biggest im-
pact on the management of daily operations. Until recently the management
of daily operations was largely centralized, in that the FAA would unilaterally
make all relevant decisions and force airlines to operate within narrow guide-
lines. Spurred by a joint government-industry effort known as Collaborative
Decision Making (CDM), however, the last five years have seen a major shift in
this paradigm. The major philosophical components of CDM are: (1) improved
data exchange and communication between the FAA and the airlines will lead
to better decision making in air traffic flow management and (2) that, when-
ever possible, those decisions which have a potential economic impact on airline
operations should be decentralized and made in collaboration with the airlines.

While the CDM paradigm encompasses a wide range of applications in air
traffic flow management, its primary focus so far has been the implementation
and enhancement of Ground Delay Programs, which are used to manage periods
of congestion at an airport. The number of enhancements that have recently been
implemented are numerous: examples include improved data-exchange, better

situational awareness tools, and increased flexibility for the airlines. Without



a doubt, however, the biggest changes have come through the introduction of
new methods for the allocation of available resources. These procedures have
had a profound impact on the interaction between the FAA and the airlines, in
that they have solidified the FAA’s role as a discoverer of constraints and as an
arbiter of rationed capacity. The resulting allotments of scarce capacity allow

airlines to trade off operating options based on internal business objectives.

1.1 Motivation

This dissertation is motivated by the fairness issues that arise in the allocation
procedures that have been introduced under CDM. Fairness concerns have played
an important role throughout the development of the allocation procedures, and
continue to be an essential factor whenever extensions or modifications to these
procedures are proposed. It is therefore surprising that, oftentimes, it is not clear
what is meant by fairness within the context of the procedures developed under
CDM. Because the notion of fairness is largely left implicit in the procedures,
there is no well-defined set of principles that defines what constitutes a fair
distribution of the resources. Moreover, it is not obvious how the concepts
embedded in the different procedures relate to each other and to the metrics that
are used to measure equity ex-post (for analysis purposes). As such, the absence
of an overall set of guiding principles complicates the extension of CDM to a more
general environment (e.g., the management of en-route resource constraints).

It is important to note, however, that the use of fairness as a basis for al-
locating scarce resources presents a immediate restriction in the focus of our

research. While the attention to fairness has evolved into one of the pillars of



CDM, a number of other approaches could also be considered. In fact, a num-
ber of different approaches to the allocation of resources have been proposed,
ranging from auctions ([61]) and congestion pricing ([57]) to bargaining schemes
([2]). However, these proposals address the allocation of airport arrival slots in
the long run, that is, the resources assigned may be viewed as long-term ca-
pacity reservations. The allocation of slots under CDM, on the other hand, is
markedly different, in that slots have to be assigned on a day to day basis due to
fluctuations in an airport’s capacity (caused by weather conditions). This intro-
duces a number of complications, such as the significant levels of uncertainty, the
complexities of airline trade-offs, and the dynamic nature of the allocation pro-
cesses, which significantly complicate each of the above mentioned possibilities.
As such, the attention to fairness may be more amenable in this environment.
Therefore, the main purpose of the research in this dissertation is the de-
velopment of fair resource allocation mechanisms in a collaborative air traffic
management environment. Our first objective is to analyze potential concepts of
fairness that might be applicable in this environment. A subsequent objective is
to show how these principles can be applied to devise fair allocation mechanisms
that can be used within a context that is characterized by significant dynamics
and uncertainty. Finally, we also consider the opportunities for increased airline
control in a CDM-based environment. In particular, we study the potential ben-
efits that can be obtained by the introduction of a framework in which airlines

dynamically trade resources.



1.2 Outline and Research Contributions

The remainder of this dissertation is organized as follows.

Chapter 2 presents a brief overview of air traffic management, in particular
the management of daily operations. We summarize the flow management initia-
tives employed by the FAA, as well as the airlines’ response to these initiatives.

Chapter 3 discusses the current move towards decentralization of air traffic
management, with a focus on the Collaborative Decision Making paradigm and
the related notion of “Free Flight”. We present an overview of the allocation
procedures introduced under CDM, and discuss their relationship to other po-
tential approaches. In particular, we motivate the use of fairness as a basis for
resources allocation decisions in the management of daily operations.

Chapter 4 investigates concepts of fairness for the allocation of arrival slots
under CDM. The fair allocation of arrival slots poses a number of fundamental
questions. Who are the slots to be assigned to, i.e. who are claimants 7 On what
basis do we compare the claimants’ demands ? Given such a basis for compari-
son, what are the resulting allocation mechanisms and how applicable are they
within the context of Ground Delay Programs 7 To address these questions, we
first interpret the problem as a cooperative game in which claimants share the
delay imposed by their respective demands. This approach, however, appears
to be less applicable within the context of GDPs. We therefore pursue a more
direct approach, in which we postulate a number of intuitive axioms and char-
acterize the resulting class of allocation mechanisms. Besides the mechanism
currently used under CDM, this yields a number of potential alternatives. We
analyze the differences between these methods, and compare their allocations

using historical GDP data. The research contribution in Chapter 4 are twofold.



First, we introduce formal fairness concepts within the framework of air traffic
flow management. Secondly, we derive a new class of allocation schemes based
on the approach discussed by Young ([86]), which extend the models proposed
by Moulin ([48]).

The mechanisms discussed in Chapter 4 define fair shares of the resources
for each airline. In Chapter 5, we propose methods to approximate these shares
in situations where the “ideal” may not be attainable. A practical motivation
for these procedures stems from the dynamic nature of GDPs. We show how
these methods yield a unified approach to the different allocation procedures
currently used under CDM. Moreover, we discuss how these methods may be
applied to reduce certain systematic biases caused by the timing of GDPs. The
main contribution of Chapter 5 is the introduction of a general framework for
the allocation of slots during GDPs, based on a novel application of models
developed for balanced just-in-time scheduling problems. In addition, Chapter
5 shows the extent to which practical issues can affect fairness, and proposes
methods to mitigate the resulting biases.

Chapter 6 explores opportunities for increased coordination during Ground
Delay Programs. In particular, we propose a general framework by which the air-
lines can trade arrival slots, in which the FAA acts as a mediator, and introduce
an optimization model for the mediation problem. Using two different models of
airline decision-making, we evaluate the potential benefits of increased coordina-
tion. The research contribution of Chapter 6 is first that it shows the potentially
significant benefits of increased coordination. In addition, we introduce novel TP
formulation for the mediation problem and demonstrate their efficiency in near

real-time settings.



Chapter 7 provides conclusions and discusses areas for further research.



Chapter 2

Air Traffic Management

The air transportation system in the U.S. is one of the most complex logistical
systems imaginable. On a daily basis, the system supports approximately 60,000
flights of commercial, military, and general aviation aircraft, and as many as
6,000 aircraft may simultaneously occupy the airspace. Besides the sheer volume,
the air transportation system is further complicated by significant variations in
airspace capacity (due to factors such as fluctuating weather conditions and
equipment outages). It is therefore safe to say that the coordination of air traffic
presents a formidable task, which requires a multitude of processes and involves
a large number of stake holders. The broad term “Air Traffic Management” is
commonly used to represent the overall collection of these processes.

This chapter presents a general overview of Air Traffic Management, with a
particular focus on operational decision and coordination processes. We start
with a high-level classification of Air Traffic Management initiatives, which pri-
marily serves to clarify the context in which operational decisions are made.
Next, we describe the major operational decision processes employed by the

FAA, and review the manner in which airlines respond to these initiatives. To



Air Traffic Management

(ATM)
Air Traffic Air Traffic
Control Flow Management
(ATC) (ATFM)
Aircraft Separation Efficient distribution of
and Safety Air Traffic Demand

Figure 2.1: ATM Components

conclude, we discuss the (often implicit) decision-making hierarchy and summa-

rize important characteristics of the ATM environment.

2.1 Air Traffic Control vs. Air Traffic Flow
Management

Air Traffic Management (ATM) can be defined as the composite of processes
that support the ultimate goal of safe, efficient, and expeditious aircraft move-
ment. It is common to distinguish two basic ATM components: Air Traffic
Control and Air Traffic Flow Management (see Figure 2.1). Air Traffic Control
(ATC) refers to processes that provide tactical separation services, that is, real-
time separation procedures for collision detection and avoidance. As such, ATC
actions are of a more “microscopic” nature and primarily address immediate
safety concerns of airborne flights. Air Traffic Flow Management (ATFM), on
the other hand, refers to processes of a more “macroscopic” nature. Typically,

ATFM considers strategic procedures, which aim to detect and resolve demand-



capacity imbalances by adjusting aggregate traffic flows to match scarce capacity
resources. Accordingly, ATFM actions have a greater potential to address system
efficiency.

For the majority of the previous century, the coordination of air traffic pro-
ceeded largely through tactical air traffic control procedures. This was deemed
sufficient, as the demand for air traffic was generally well within the capacity
limits. Periodic congestion was usually resolved by procedural changes or tech-
nologic advances (see [55] for a comprehensive review of the evolution of ATM).
It was not until the aftermath of the air traffic controllers’ strike of 1981 that
the FAA first implemented a systematic form of flow management known as
ground holding. Under ground holding, aircraft departures are restricted until
it is determined that sufficient airspace is available for each aircraft!. Initially,
the use of ground holding was primarily instituted to reduce workload for the
inexperienced controllers that were hired in the wake of the mass firings that
accompanied the strike. However, the continued growth in air traffic that fol-
lowed the airline deregulation act of 1978, as well as changes in traffic patterns?,
gradually increased the scope of ATFM practices. Over the past two decades,
the levels of congestion in the system have risen consistently (see [25]), which has
resulted in increasing delays during peak periods of travel. The use of ATFM
initiatives has therefore become increasingly important, and will undoubtedly
play an even more important role in the future.

A systematic description of the application of flow management to resolve

air traffic congestion is given by Odoni [56], who classifies ATFM initiatives as

LA more detailed description follows in Section 2.2.

2Caused in particular by the so-called “hub and spoke” scheduling practices used by airlines.
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long-, medium-, or short-term:

e Long-term approaches typically focus on increasing capacity. Examples
include the construction of additional airports (which may take 10 to 15
years), the introduction of new technologies (e.g., satellite-based navigation
tools), and the addition of runways to existing airports. Though effective,

such initiatives are usually very costly and may be difficult to implement?.

e Medium-term approaches are mostly administrative or economic in nature,
and try to alleviate congestion by modifying spatial or temporal traffic
patterns. For example, at some airports flight schedules are coordinated
bi-annually according to IATA guidelines ([32]). Recently, Congress pro-
posed a bill that would allow airlines to coordinate flight schedule reduc-
tions at congested airports (The HD1407 bill, [78]). Similar medium-term
approaches include the recent use of slot lotteries at LaGuardia Airport
( [23]), as well as current proposals for slot auctions and congestion pric-

ing.

e Short-term approaches consider the strategic adjustment of air traffic flows
to match available capacity, and typically span a planning horizon that is
less than 24 hours. These operational ATFM initiatives attempt to miti-
gate the unavoidable congestion that may arise from unforeseen and unpre-
dictable disruptions as efficiently as possible. Such periods of congestion

arise frequently when bad weather causes sudden capacity reductions.

3Airport expansions frequently encounter the resistance of local communities and other
special interest groups, who may be concerned with noise, real estate depreciation and other

factors; Moreover, they are usually subject to strict environmental regulations.

11



Throughout this dissertation we focus on strategic, short-term ATFM initia-
tives. It is important to note that these operational processes are a critical and
indispensable part of ATFM: while long- and medium-term initiatives may help
to alleviate congestion, the significant impact of weather conditions on airspace
capacity* make it unlikely that periodic congestion can ever be eliminated. In
the remainder of this dissertation, we will use the term ATFM to represent only

these short-term initiatives.

2.2 Air Traffic Flow Management Initiatives

In the U.S., the Federal Aviation Administration (FAA) is responsible for the
coordination of air traffic. Its primary task is the enforcement of proper separa-
tion requirements in the controlled airspace. To carry out this function, the FAA
has divided the airspace in the continental United States into 22 areas. Aircraft
separation responsibility within each area belongs to associated Air Route Traf-
fic Control Centers (ARTCCs). Because a single controller cannot handle all
aircraft within an ARTCC’s boundaries, each ARTCC is further divided (both
vertically and horizontally) into 20 to 80 smaller areas called sectors. Air Traffic
Controllers guide aircraft from sector to sector until they arrive within roughly
200 miles of their destination airports, at which point control of the aircraft
is assumed by terminal radar approach control facilities (TRACONS). Finally,
airport towers control aircraft while they taxi to and from runways and during

takeoffs and landings. Accordingly, the ATC functions performed by the FAA

41t is not unusual that occurrences of bad weather reduce airport capacities by a factor of

2 or 3.
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form a highly distributed process. Air traffic controllers (cf. TRACON /control
tower representatives) are only responsible for the movement of aircraft within
their region of airspace, and their decisions are mainly based on local and near
real-time information about the flights entering their sectors. Typically, there is
little coordination in ATC procedures; coordination occurs largely between con-
trollers at adjacent sectors, by handoff procedures that transfer the responsibility
for an aircraft when it passes sector/facility boundaries®.

The (strategic) ATFM functions performed by the FAA, on the other hand,
are primarily coordinated by the FAA’s command center, the Air Traffic Con-
trol Systems Command Center (ATCSCC). The ATCSCC continuously monitors
current and projected demand within the NAS, and identifies system constraints
or other conditions (e.g. weather) that may affect the capacity limits. Whenever
it is predicted that demand will exceed capacity limits within a 15-minute inter-
val, FAA regulation mandates a response. In that case, the ATCSCC generates
and implements strategies to resolve the projected congestion. The short-term
flow management procedures that are used most often are ground delay pro-

grams, metering, and rerouting. These initiatives may be outlined as follows.

e Ground Delay Programs (GDPs) are used in response to periods of airport
congestion. Typically, this is caused by a reduction in the airport’s arrival
capacity due to bad weather (although airport construction, special runway
operations and limited surface capacity may also be possible reasons). In a
GDP, flights bound for congested airports are delayed on the ground, so as

to balance the total arrivals with the reduced capacity at the airport under

5Qccasionally though, controllers may also be concerned with downstream effects, so as to

prevent the simultaneous operation of too many aircraft in an area ([25])
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consideration. Ground holding therefore consists of delaying a flight’s take-
off beyond its scheduled arrival time. The underlying motivation is that,
as long as a delay is unavoidable, it is both safer and less costly for the

flight to absorb this delay on the ground before take-off.

GDPs are the most important traffic management procedure used by the
ATCSCC; in spite of the fact that GDPs can only control aircraft destined
for a single airport, they are sometimes even used to help resolve congestion
in other areas of the airspace. Closely related to GDPs are are so-called
Ground Stops, which are implemented when an airport has an unexpected
problem (e.g. a runway closure or a severe snowstorm). Ground stops
allow the ATCSCC to stop all inbound traffic (i.e. delay their departure)
to reduce traffic flows. When ground stops become excessive or delays can

be foreseen, a regular GDP often follows the ground stop(see also [24]).

Metering restrictions control traffic flows in the enroute environment. Me-
tering procedures may be subdivided into (1) time-based metering, which
controls the time at which an aircraft is to pass over a certain geographical
point, and (2) distance-based metering, which places a limit on how closely
aircraft can follow each other. Distance-based metering is better known as
“Miles-In-Trail”, which specifies a minimum separation (in miles) between

aircraft moving in the same direction.

Time-based metering is used primarily when excessively large airborne
holding queues have built up around an airport (e.g. due to severe ca-
pacity reductions or airport closures). In such cases, time-based metering

can be used to control holding patterns precisely, and to efficiently space
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aircraft for final approach. Miles-In-Trail restrictions are commonly used
in conjunction with so-called Enroute Spacing Programs, to manage the

(merging of) traffic streams entering an airport’s terminal area (cf. [24]).

e Rerouting of aircraft occurs primarily when bad weather threatens the
accessibility of certain regions of the airspace. Oftentimes, rerouting is
instituted as part of Severe Weather Avoidance Programs (SWAPs), which
are typically enacted when traffic flows are affected by widespread severe
weather in the airspace. SWAP plans usually have a major impact on air
traffic, and oftentimes include metering restrictions and/or GDPs along

with rerouting.

In addition to these major initiatives, there are also a number of procedures
with a smaller scope. For instance, Low Altitude Arrival and Departure Routes
(LAADR) embodies a set of procedures for the use of low altitude routes to
avoid congested airspace, and Coded Departure Routes (CDR) involves proce-
dures and a database for the creation, storage, and dissemination of alternate
routes used to avoid airspace blocked by severe weather. Other examples include
the Pacific Track Advisory Program, which is used to allocate a series of tracks
for aircraft to transit the North Pacific from U.S. airports to airports in Asia,
and the National Route Program (NRP), which allows airlines to file flight plans
other than those normally preferred by the FAA ([1]). Typically, such processes
are of a more “local” nature, in that they are not (or only partially) coordi-
nated by the ATCSCC. The reason for this is that they usually apply only to
certain specific region of airspace and heavily rely on local conditions. Gener-
ally speaking however, we may classify the ATFM actions employed by the FAA

as (1) imposing ground delays, (2) imposing airborne delays, and (3) imposing
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alternate routes.

2.2.1 Airline Response

An airline’s operational objectives are usually markedly different from those that
underly the FAA’s ATFM initiatives: whereas the FAA is concerned with aggre-
gate flows and capacity limits, the ultimate goal of airline operational control is
to preserve its published flight schedule. An airline’s flight schedule represents
its primary product, and often reflects its competitive strategy.

Airlines typically coordinate their daily operations at centralized Airline Op-
erational Control Centers (AOCs), which interact with airport and maintenance
stations and with individual pilots. Schedule preservation needs to consider both
individual flights and schedule interdependencies. Therefore, airline operations
require a level of coordination that is usually much higher than it is for the
FAA, because of the potential cascading effects of flight delays®. This presents
a challenge in particular when airlines face so-called irreqular operations, that
is, when they need to respond to ATFM restrictions imposed by the FAA or to
other schedule disruptions .

Important functions that need to be performed by airline operational control

include the following (also see [1] and [24]):

e Schedule Adjustment. On a daily basis, unforeseen events, such as delays
or mechanical problems, may disrupt an airline’s flight schedule. To pre-
vent the cascading effects these disruptions may have, the AOC will make

schedule adjustments that allow a return to a more balanced condition.

6The propagation of delays is of course caused by connections that passengers, flight crews,

and aircraft oftentimes have to make.
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Schedules may be adjusted in several ways. One option is to delay selected
flights. Other possibilities are to reallocate the resources needed to operate
flights (e.g. aircraft, crews, but also airport arrival slots), or even to cancel
flights to reduce the demand on those resources. In addition, airlines may

sometimes create flights to balance the schedule.

It should be noted that balancing the schedule may be interpreted dif-
ferently by individual airlines: For one airline the objective might be the
ability to return to the normal schedule by the next day, while for another

it might mean flying as many of its scheduled flights as possible (cf. [24]).

e Flight Planning and Dispatch. An important aspect of airline operations
is to determine flight routes and payload that minimize costs and meet
the overall airline flight objectives. Winds, aircraft type and restrictions
all affect the choice of route, which involves a complex trade-off between
speed, altitude, payload and fuel load. In addition, flight planning may
have to take into account that regions of airspace may be congested or

temporarily inaccessible.

o Flight Monitoring. This includes monitoring all aspects of flights in progress,
such as ensuring that the flight stays within safe and legal limits, assessing
weather conditions en route and at destination and alternate airports, and
assisting crews in solving problems that may arise. Thus, AOCs are in

constant communication with crews during flights.

Schedule planning is usually performed by dedicated coordinators. Flight plan-
ning, dispatch, and monitoring are performed by flight dispatchers, which are

licensed personnel responsible for individual flights. By law, the responsibility for
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the safety and control of flights is shared between the dispatcher and pilot; thus,
dispatchers at the AOC maintain frequent contact with pilots prior to and dur-
ing the flight. Other tasks of airline operational control include crew scheduling
and tracking, aircraft maintenance operations, and gate management. Typically,
these tasks are performed by separate departments that interact with the AOC.
For instance, airport stations manage gate allocations and other ground-based
resources (e.g. passenger and baggage handling); maintenance stations handle
the coordination of required aircraft maintenance checks (e.g. ensure that air-

craft are routed through the maintenance stations).

2.2.2 Interaction

Both on the side of the FAA and on the side of the airlines, decision-making
responsibilities are shared between a number of stake holders. The actions these
stake holders may perform are of course highly interdependent, and therefore
necessitate a significant degree of coordination. On the FAA’s side, operational
processes are essentially distributed among three organizational levels. At the
first level, we find the ATCSCC. The ATCSCC oversees aggregate traffic flows
and monitors current and projected capacity limits and demands. Major flow
management actions, such as GDPs and SWAPs, are usually initiated by the
ATCSCC. The ATCSCC coordinates these ATFM initiatives with traffic man-
agement units at the various ARTCCs, TRACONSs, and Towers, which form the
second organizational level. The entities at this level are responsible for coordi-
nating air traffic in their assigned regions of the airspace. Besides their interac-
tion with the ATCSCC, adjacent centers at this level also interact to coordinate

the air traffic between their regions. ARTCCs, TRACONSs, and Towers further
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delegate responsibilities to the individual air traffic controllers, which form the
third organizational level. The primary interaction at this level is between con-
trollers at adjacent sectors to transfer control of aircraft. On the airlines’ side, on
the other hand, daily operations are primarily coordinated at centralized AOCs.
Specific tasks, such as gate assignments and maintenance are coordinated with
various stations, and flight dispatch is of course in constant communication with
pilots to monitor and control the progress of individual flights.

The interaction between the FAA and airlines during daily ATFM operations
may be separated according to interactions at the strategic and the tactical level,

as is shown in Figure 2.2. At the strategic level, interactions occur primarily be-
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tween between the ATCSCC and the airlines” AOCs. When the ATCSCC pre-
dicts a sustained period of congestion, it may respond with an ATFM initiative
(e.g. a GDP or a SWAP plan), which is communicated to the airlines’ AOCs.
Typically, these plans are formulated two to four hours in advance. In turn,
airlines communicate the schedule adjustments they intend to make in response
to these disruptions. It should be noted that this flow of information is highly
important, as the FAA’s decisions are partly based on the information they re-
ceive. At the tactical level, the interactions occur primarily between controller,
pilots (to ensure separation), centers and stations. Typically, these interactions
concern ATC initiatives (e.g. ensuring the separation standards), and other near

real-time initiatives.

2.3 Discussion

The current structure of ATM in the U.S., with its amalgam of flow management
initiatives and variety of stake holders, is the result of an evolutionary process
stretched across a number of decades. When faced with a frequently recurring
problem, the typical response would be a “local” solution, with limited concern
or consideration to the overall system effects. While air space capacity was
readily available, the congestion resulting from disruptions to the system (e.g.,
bad weather) was relatively minor. Traditionally, the FAA would unilaterally
decide how to resolve this congestion, with little or no input from the airlines.
On the whole, airlines could reasonably absorb the resulting flight delays with
limited effects on the integrity of their flight schedules (e.g., by accounting for

these effects in the flights’ block times [25]).
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However, the steady growth in air traffic during the past decade has pushed
this approach to its limits. As demand levels approximate available capacity,
even minor disruptions may have significant ripple effects and lead to sustained
periods of congestion. This became painfully clear in September 2000, when
the relaxation of slot controls mandated by Congress led to a daily reoccurrence
of gridlock at LaGuardia. The resolution of these disruptions necessitates an
increased role for the ATFM initiatives imposed by the ATSCC, in particular
with regard to the possible network effects in the system. At the same time,
the impact of these effects on the integrity of flight schedules has significantly
increased the management responsibilities at the airline side.

As a result, the coordination and cooperation between the FAA and the
airlines has become increasingly important. To implement appropriate ATFM
actions, the FAA needs an accurate picture of flight status and intent. Air-
lines, on the other hand, need the flexibility to adjust their schedules, and can
only provide accurate information if they know the actions planned by the FAA.
Given the relatively short response times, the real-time exchange of information
between the FAA and the airlines is therefore a critical component of ATFM
functionality. In addition, it has become increasingly clear that the ATCSCC
should not be solely responsible for determining the delays, reroutes, etc. re-
quired to resolve congestion. While both the FAA and airlines can possibly
delay or reroute flights, certain actions that may alleviate congestion are only
available to airlines. For example, only an airline can decide to cancel flights
or to reassign passengers, crew, and aircraft. Consequently, any successful at-
tempt at flow management will require a significant input from and role for

airline decision-making. Such decisions involve economic trade-offs, which the
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FAA is not in a position to make. As such, it is not surprising that current
efforts to improve ATM, which are discussed in the next Chapter, envision a

more decentralized system for managing air traffic.
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Chapter 3

Towards Decentralized Air Traffic

Management

Recent studies estimate that air traffic will increase at an annual rate of 3%
to 5% over the next 15 years. Accommodating this increase in air traffic will
likely require significant changes in the structure of ATM functions, especially
in light of the already reoccurring periods of gridlock in the system. The FAA
has responded to this challenge by formulating a comprehensive vision for the
future of ATM, better known as Free Flight. In addition to extensive technology
upgrades, the notion of free flight is characterized by a significant move toward
decentralized decision-making.

This chapter presents an overview of Free Flight and the related concept of
Collaborative Decision-Making (CDM). In addition, we discuss the effect these
ideas have had on the implementation of GDPs. It should be noted that a move
toward decentralization in such a complex environment may bring forth a variety
of issues, such as human factors problems, software development, etc.. However,
this chapter focuses on the issues related to resource allocation problems that

arise in the implementation of these ideas.
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3.1 The Future of Air Traffic Management

The current ATM structure presents a myriad of rules and procedures for airspace
users. Notwithstanding recent initiatives, users are often forced to operate within
narrow and highly restricted guidelines. While this approach provides a high
level of predictability (and therefore safety), it is safe to say that the structure
of the airspace system was simply not designed to deal with the current and pro-
jected volume of traffic. As a result, the FAA has been subject to widespread
criticismm. In particular, there is a general consensus among airlines that the
restrictions implemented by the FAA are often overly severe, which results in
unnecessary delays, congestion, and costs for the airlines. In response to these
criticisms, the FAA has formulated a wide-ranging set of plans known as “free
flight”. The first phase of the implementation is currently underway, and started

in 1997 (see [55]).

3.1.1 Free Flight

According to the FAA, Free Flight represents

“a concept for safe and efficient flight operating capability under
instrument flight rules (IFR) in which the operators have the freedom
to select their path and speed in real-time. Air traffic restrictions
are imposed only to ensure separation, to preclude exceeding airport
capacity, to prevent unauthorized flight through special use airspace,
and to ensure the safety of flight. Restrictions are limited in extent
and duration to correct the identified problem. Any activity that

removes restrictions represents a move toward free flight.”
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The concept of free flight embodies a different philosophy toward ATM functions.
The traditional approach largely followed a central planning paradigm, in which
users had to adhere to ATC decisions (e.g. using ATC-preferred routes). In
contrast, free flight envisions increased collaboration between users and air traffic
managers, greater flexibility for airlines to make decisions to meet their unique
operational goals, and the replacement of broad restrictions with more tailored
responses. In theory, free flight would let pilots assume a significant portion of
the separation responsibilities, and choose routes as they see fit using advanced
technologies. ATC interventions would only occur if flight separation standards
were threatened to be violated.

There are, however, a number of steps that need to be taken before these
ideas can be put into practice. As a first step toward free flight, the FAA has
instituted the National Route Program (NRP), which gives airlines and pilots
greater liberties in choosing their routes. Under this program, certain flights
may proceed unrestricted from origin to destination!. The NRP program has
had considerable success (see [1] and [55]), showing the potential benefits of
free flight. Other efforts currently underway focus on the necessary technol-
ogy improvements, such as digital communication systems and satellite-based
navigation technology.

In the previous chapter, we separated ATM functions according to two basic
components, tactical ATC and more strategic ATFM. It should be noted that
with its focus on separation insurance and dynamic conflict probing and resolu-

tion, free flight is perhaps best viewed as the future vision for the ATC functions

lsubject to terminal area restrictions within a 200-mile radius of take-off and landing, as

well as certain altitude restrictions

25



in the air transportation system.

3.1.2 Collaborative Decision-Making

Collaborative Decision-Making (CDM) is a concept that goes hand in hand with
free flight, in that it may be viewed as the future direction of ATFM functions
(for an overview of CDM, see [8], [10], and [83]). Under CDM, the management
of traffic flows and the associated resource allocation decisions are conducted
in a way that gives significant decision-making responsibilities to AOCs. The

overall objectives of CDM can be summarized as:

e generating better information, by merging flight data from the airspace

system with information generated by airspace users;

e creating common situational awareness by distributing the same informa-

tion both to traffic managers and to airspace users;

e creating tools and procedures that allow airspace users to respond directly
to congestion and to collaborate with traffic flow managers in the formu-

lation of flow management actions.

CDM was initially conceived in the mid-1990s within the FAA Airline Data Ex-
change (FADE) project, which originally was created as a short-term experiment
to see if up-to-date airline schedule information would result in improved flow
management decisions. The issues revealed during extensive human-in-the-loop
experiments eventually led to the initial implementation of CDM, which pri-
marily focused on the development of new operational procedures and decision

support tools for implementing and managing GDPs.

26



The initial implementation of CDM, known as GDP enhancements (GDP-E)
began its prototype operations at San Francisco and Newark airports in Jan-
uary of 1998. In GDPs under CDM, airlines send operational schedules and
changes to schedules to the ATCSCC on a continual basis. The schedule infor-
mation includes flight delay information, cancellations, and newly created flights.
The ATCSCC uses this information to monitor and possibly implement GDPs,
using a newly developed decision support tool called Flight Schedule Monitor
(FSM). It is important to note that this information is shared with all users
(e.g. airlines also have access to FSM), creating a common picture of current
and projected airport conditions. Essential to these procedures is the use of
newly defined resource allocation procedures, which have removed previously
existing disincentives for airlines to provide accurate information. The effects of
these procedures has been significant: it has been stated that since their initial
implementation in January of 1998, over six million minutes of assigned ground
delay have been avoided (cf. [9]). While one can point to a variety of concepts
and technologies that are fundamental to CDM’s success, probably the most
vital underlying element has been a strong and continuous interaction among
all stake holders. Airline input was sought from the very beginning, and regular
meetings between the various groups involved in CDM have been held through
the life of the CDM project.

The success of these initial CDM efforts has highlighted the potential ben-
efits of increased collaboration in ATFM, and led to a number of projects that
aim to enhance the basic application of CDM to GDPs. Examples include the
incorporation of uncertainty trade-offs during a GDP (e.g., due to weather pre-

dictions, see [28]) and the possible inclusion of airport departures into the GDP
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planning process ([25]). Another example is the current Collaborative Routing
(CR) effort, which intends to improve handling of potential en-route congestion;
whereas GDPs under CDM give airlines more flexibility in distributing FAA-
assigned delays among its flights, CR would also give airlines greater input in

rerouting flights.

3.2 Decentralized Ground Delay Programs

So far, the efforts of the CDM working group have primarily concentrated on
GDP enhancements. These efforts have led to substantial changes in the pro-
cedures for allocating ground delays, which provide airlines a much greater in-
put. As such, these procedures present a significant move towards decentralized
ATFM. This section introduces the main GDP procedures introduced under
CDM, and contrasts these procedures with traditional decision models for the

allocation for slots.

3.2.1 Models for the Ground Holding Problem

The use of ground holding to resolve air traffic congestion was first described
systematically by Odoni [56]. However, the generic flow management problem
defined by Odoni is extremely general, in that it addresses congestion anywhere
in the network. Therefore, a common assumption (both in theory and, more
implicitly, in practice) is that the only capacitated element in the air traffic
network is the arrival airport. Under this assumption, the problem is commonly
known as the Ground Holding Problem (GHP). The basic version of the GHP

(see [72]) requires the following additional assumptions:
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I. Discrete Time Horizon: The planning horizon consists of a fixed and fi-
nite time period, which has been discretized into contiguous time periods

(slots).

I1. Deterministic Demand: At the beginning of the planning horizon, a com-
plete list of flights bound to arrive at the congested airport is known.
Moreover, the travel times of these flights are deterministic and known in

advance.

[TI. Deterministic Capacity: At each time period, the airport arrival capacity
in each time period is deterministic and known in advance (Without loss

of generality, we assume each slot can service 1 flight).

Given these assumptions, the GHP can be formulated as an Integer Programming
problem. We represent the flights as a set F and the slots as a set S. We let
oags denote the scheduled arrival time of a flight f € F, and ¢, the time of a slot
s € §. The resulting LP formulation is shown in Figure 3.1. It should be noted
that the constant capacity assumption implies that no flight will be allocated
airborne delay (since airborne delay is more expensive than ground delay). Thus,
this version of the GHP allocates ground delays based on the costs C't(d), which
are a function of delay.

While the distribution of delays among flights is an important topic, it has
received relatively little attention in literature. Most models that address the
GHP assume constant marginal costs of both airborne and ground delay 2, and

instead concentrate on the trade-off between them in the case of stochastic ca-

2Note that in this case, the previous problem can be simplified further, since a first-come,

first-served ordering will be optimal.
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Figure 3.1: Assignment problem formulation of the static, deterministic GHP

pacity (i.e., by relaxing assumption 3). This version of the GHP was first studied
in [5] and [56]. More efficient models, as well as several extensions, were proposed
in [63], [64], [73], and more recently [11] and [27]. A systematic review of some
of these results may be found in [4]. Other related work has focused on differ-
ent aspects of the ground holding problem, in particular on the effects of delay
propagation through the air traffic network (e.g., [3] [82], and citeVranas94a)
and on more general air traffic flow management problems (see [14] and [15]).
Generally speaking, one might argue that the focus on aggregate trade-offs
between airborne and ground delays limits the attention that can be given to
airline-specific preferences. Even though airline specific delay costs could, in
principle, be incorporated into the decision problems, the “global optimization”

perspective would likely introduce systematic biases against or in favor of indi-
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vidual airlines®. Consequently, the models described here are perhaps primarily
suited for making aggregate decisions (e.g., determining overall flow rates per

period, as discussed in [11]).

3.2.2 Airline Decision-Making during GDPs

Whereas the FAA is primarily concerned with aggregate traffic flows and overall
throughput during periods of airport congestion, the decisions and trade-offs
faced by individual airlines in a GDP are of a different nature. When faced
with a GDP, an airline typically responds to the resulting schedule disruptions
by trading-off flight cancellations and delays. Such decisions are based on a
multitude of factors, such as the disruption of and the cost of crew schedules,
the passenger costs of delay, possible flight connections, etc.

The ground delays imposed by a GDP create severe disruptions of an airline’s
flight schedule, which not only affect the delayed flights but may also propagate
delays to other flights. To mitigate these disruptions, airlines may cancel flights
and substitute flight-slot assignments. A decision model to support this slot
swapping process was first presented in [79], which also describes its application
at American Airlines. Other models for resolving schedule disruption through
slot swapping are proposed in [29], [40], [41], and in [54]. Another approach,
which explicitly considers the connection dependencies of hub operations but
leads to less efficient algorithms, is proposed in [43] and further extended in [22].

It should be emphasized that none of these models fully reflect the complexity

3See [56]. Typically, most ground-holds would be assigned to aircraft with smaller per-
unit delay costs (e.g. regional aircraft), while aircraft with higher delay costs would be given

priority (e.g. wide-body aircraft).

31



of airline decision-making during GDPs. For instance, none of these models
incorporates the decision to cancel a flights, which is one of the most important
decisions during a GDP.

Another family of decision models for resolving schedule disruptions may be
found in [12], [20], [21], [70], [71], [74], and [75]. Generally speaking, this class
of models attempts to find an operable, system-balanced flight schedule when
aircraft shortages disrupt an airline’s flight schedule (that is, they consider an
airline’s entire network of flights). The application of these models at United
Airlines is described in [35] and [60]. These models, however, typically do not
incorporate arrival slot constraints. Their use is primarily in schedule recovery

after the disruptions from a GDP have occurred.

3.2.3 Ground Delay Programs under CDM

In contrast to the models proposed in the literature, the allocation procedures
instituted under CDM primarily address the distribution of delays among in-
dividual flights. CDM has its origin in early efforts by the FAA (through the
FADE program?) to acquire up-to-date airline schedule information (cf. [83]).
Though human-in-the-loop experiments with ATFM specialists clearly showed
the benefits of this information, airlines remained highly reluctant to submit this
data. The reason for this was that the GDP procedures used at the time could
actually penalize an airline for providing that information. The main reason
for this problem was that flights were essentially allocated slots on a first-come,
first-served basis according to their most recent estimated arrival times, using

a algorithm called “Grover-Jack”. With this mechanism, a so-called “double

4FADE: FAA Airline Data Exchange
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penalty” could occur. For example, if a flight were delayed for 30 minutes due to
mechanical problems and the airline reported this delay during a GDP, the FAA
might assign another 30 minutes of ground delay (for a total delay of 60 minutes).
However, the GDP-assigned delay would have been absorbed if the airline had
not reported its mechanical delay! In addition, the Grover-Jack mechanism re-
allocated slots that were assigned to cancelled flights, thus preventing an airline
from substituting other flights into those slots.

The resource allocation schemes implemented under CDM have addressed
these issues through a fundamental change in the allocation of capacity. Rather
than an assignment of individual flights to arrival slots, the central paradigm
under CDM is that slots are allocated to airlines. This has led to the intro-
duction of two new allocation mechanisms, RBS and Compression. The RBS
algorithm creates an initial allocation of slots to airlines, based on the consensus
recognition that airlines have claims on the available arrival capacity through the
original flight schedules. Given their slots, airlines are free to reschedule flights
according to their private objectives, through flight substitutions and cancella-
tions. The Compression Algorithm is a reallocation procedure that prevents the

underutilization that might be caused by flight cancellations and delays.

Ration-By-Schedule As the first step in a GDP, the RBS procedure rations
the arrival slots among airlines. As in the Grover-Jack procedure, RBS assigns
flichts to slots on a first-come, first-served basis. In RBS, however, flights are
ordered according to their original scheduled time of arrival as opposed to the
most recent estimated time of arrival that was used before. Consequently air-

lines will not forfeit a slot by reporting a delay or a cancellation, which is what
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RBS ALGORITHM:

Step 1. Order the flights in F by increasing scheduled time of arrival.

Go to step 2.

Step 2. Select the first flight in F that has not been assigned a slot.
If no such flight exists, the algorithm is terminated.

Otherwise, the flight is assigned the earliest unassigned slot it can meet.

Figure 3.2: The Ration-By-Schedule Procedure

happened prior to CDM. Figure 3.2 provides a conceptual overview of the RBS
algorithm.The actual RBS algorithm has to take into account several complicat-
ing factors, such as flights being airborne, flights exempted from the GDP, and
the possibility that a GDP was already executed before. (see [28] for a discussion
of these details).

It should be noted that the resulting flight schedule may be inefficient in its
utilization of arrival capacity. Arrival slots may have been assigned to flights
that have been cancelled or delayed and therefore cannot use their assigned slot.
However, the end result of RBS should not be viewed as an assignment of slots
to flights but rather as an assignment of slots to airlines. After RBS, an airline
can reassign the slots it owns to any of its flights by using the cancellation and

substitution process.

Compression After a round of substitutions and cancellations the utilization
of slots can usually be improved. The reason for this is that an airline’s flight
cancellations and delays may create “holes” in the current schedule, that is, there

will be arrival slots which have no flights assigned to them. The purpose of the
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Compression Algorithm is to move flights up in the schedule to fill these slots.
The basic idea behind the Compression Algorithm is that airlines are “paid back”
for the slots they release, so as to encourage airlines to report cancellations. The
extent to which a flight can be moved up will be limited, e.g. a flight cannot
depart before its scheduled departure time. To capture this, each flight has
an earliest arrival time specified by the mapping e : F — S. Moreover, it is
assumed that a flight cannot be moved down from its position in the current
schedule /. Thus, the set of slots {e(f),...,I(f)} defines the window in which
flight f can land. A conceptual overview of the Compression Algorithm is shown
in Figure 3.3. It should be noted that there are two ways for an arrival slot to
become open; either the flight assigned to that slot has been cancelled, or it has
been delayed by a cause unrelated to the GDP, e.g. mechanical delay. In either
event, the controlling airline will release the slot to the Compression Algorithm.

The important features of the Compression Algorithm are that (i) arrival slots
are filled whenever possible, (ii) flights from the airline that owns the current
open slot are considered before all others, (iii) if the controlling airline cannot
use a slot, then it is compensated by receiving control over the slot vacated by
the flight which moves into its slot, and (iv) airlines do not involuntarily lose
slots they own and can use.

To illustrate the Compression Algorithm, let us consider the example shown
in Figure 3.4. The leftmost figure represents the flight-slot assignment prior to
the execution of the Compression Algorithm. Associated with each flight is an
earliest time of arrival, and each slot has an associated slot time. Note that
there is one canceled flight. The rightmost figure shows the flight schedule after

execution of the Compression Algorithm: as a first step, the algorithm attempts
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COMPRESSION ALGORITHM:

Step 1. Order the flights according to the current schedule. Determine the set

of open slots Cs. For each slot ¢ € Cg, execute step 2.

Step 2. Determine the owner of slot ¢, that is, the airline a that owns the
cancelled or delayed flight f that has been assigned to slot ¢. Try to fill

slot ¢, according to the following rules:

2.1. Determine the first flight g from airline a (in the current schedule)
that can be assigned to slot ¢, that is, for which ¢ € {e(g),...,1(g)}.
If there is no such flight, go to Step 2.2. Otherwise, go to Step 3.

2.2. Determine the first flight ¢ from any other airline that can be assigned

to slot c¢. If there is no such flight, go to Step 2.3. Otherwise, go to

Step 3.

2.3. There is no flight that can be assigned to slot c¢. Return to Step 1

and select the next open slot.

Step 3. Swap the slot assignments of flights f and g, i.e, assign flight g to slot
i, and flight f to slot I(g). Note that airline a is now the owner of open

slot 1(g). Next, slot I(g) is made the current slot, and Step 2 is repeated.

Figure 3.3: The Compression Procedure

36



(a) Initial Assignment (b) Compression Assignment
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Figure 3.4: Compression Example.

to fill AAL’s open slot. Since, there is no flight from AAL that can use the slot,

the slot is allocated to UAL, and the process is repeated with the next open slot.

3.3 Discussion

The move toward free flight presents a number of dramatic changes in ATM
functions. It should be emphasized, however, that the path toward implementing
these changes is necessarily incremental, consisting of a large number of small
steps. Radical, large-scale modernization efforts by the FAA have had a history
of failure, and the FAA has therefore adopted the more cautious approach of
“build a little, test a little, field a little”. This approach is further motivated
by the vast complexity of the airspace system, in which many of the constraints
and rules are difficult to represent formally. The current free flight efforts and
the initial implementation of CDM are examples of this approach, and for which

the restricted focus has led to considerable success.
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The GDP enhancements introduced under CDM, for instance, have had a
profound impact on the interaction between the FAA and airlines. From these
procedures, a general protocol for the interaction between the FAA and airlines
has begun to emerge, which defines each side’s roles and responsibilities. In par-
ticular, CDM has solidified the FAA’s responsibility to monitor the system and
its authority to ensure that demand does not exceed capacity. Furthermore, the
procedures implemented under CDM define the role of the FAA as a discoverer
of constraints and as an arbiter of rationed capacity. The resulting allotments
of scarce capacity allow airlines to trade off operating options based on internal
business objectives. At the same time, airlines are responsible for providing the
FAA with accurate data, especially in light of their possible schedule adjustments
(see also [84]).

The evolution of this framework has been, at least to a large degree, the
result of the environment in which it is used. In fact, one might argue that
these procedures have been successful exactly because they took into account
the context in which GDPs are executed (and, through extensive meetings, the
concerns of all the parties involved). In particular, a key characteristic of GDPs
under CDM is that slots are allocated initially, using RBS, followed by periodic
inter-airline slot exchanges, using Compression. The use of slot exchange (as
opposed to a single allocation step) can be interpreted as a compromise between
two opposing factors. On the one hand, GDPs are executed in a dynamic en-
vironment that is characterized by significant uncertainty. In and of itself, this
presence of uncertainty would suggest a postponement in the allocation of slots
(i.e. the allocation of flights to slots would be postponed as much as possible).

On the other hand, however, airline operations would be severely hampered by
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such a postponement in the allocation of arrival slots. The impact of GDPs
on flight schedules forces airlines to respond with an oftentimes elaborate set of
strategies . The time required to formulate a response (as well as the internal
communication of schedule changes) may be significant, and suggests an early
allocation of arrival slots. Specifically, delays in the allocation would severely
limit an airline’s possible responses and would expose them to the risk of not
getting timely slots. The initial allocation followed by an exchange addresses
both these issues: the initial allocation allows airlines ample time to formulate
a response, while subsequent reallocations address dynamic changes in schedule
and capacity.

Another factor that has contributed to the success of CDM is the recognition
that GDPs are part of a much larger and more complex air traffic system. By
limiting the scope of its decisions, the GDP processes take into account that
determining airport arrival capacities is just one of the decisions made by the
the ATCSCC, and that arrival slot allocation is part of a much more complex set
of decision processes faced by the airlines. This is reflected in the following two
features of the GDP process. First, the direct interaction in GDPs under CDM
primarily involves the ATCSCC and airline AOCs, and does not incorporate
direct communications with, or input from, other stake holders (e.g. Pilots,
Tracons, etc.). This does not imply that the concerns from other stake holders
are not taken into account; rather, these intra-FAA and intra-airline decisions
are explicitly incorporated into the scope of GDP procedures. Second, GDPs can

be implemented with little knowledge or information about airline preferences.

5To maintain the schedule’s integrity, an airline may cancel or delay flights, and reallocate

resources (e.g. crews, aircraft, etc.).
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The reason for this is that after the initial allocation, airlines can adjust their
schedules using the substitution/cancellation process. For instance, suppose that
flight AL100 is a lightly loaded flight with few connecting passengers and a CTA
of 12:00 and that AL500 is a fully loaded flight with many connecting passengers
and a CTA of 12:45. Since the timely arrival of the first flight is not that crucial,
airline AL might want to cancel AL100 and substitute flight AL500 into the
12:00 time slot, thus saving AL500 45 minutes of delay. It should be emphasized
that an approach that might require substantial a-priori revelation of airline
preferences could be difficult to implement; airlines may not yet have completed
formulating their response strategies, and it may be difficult for an airline to
evaluate all possibilities. Not only do an airline’s decisions involve an amalgam of
factors, they also may difficult to quantify (e.g., when taking into account factors
such as workload distribution). Moreover, different airlines may have different
planning capabilities. To summarize, the GDP processes implemented under
CDM provide a set of clearly defined roles and responsibilities, with compact
interactions yet substantial flexibility, which can be implemented on a relative
stand-alone basis.

It should be noted that the allocation procedures developed under CDM are
markedly different from the approaches that have so far been proposed in the
literature (see [2], [25], [43]). In [2], an evolutionary framework is proposed in
which airlines coordinate their decisions through bargaining and auctions. These
ideas are further pursued by Hall ([25]) and by Milner ([43]), who proposes a pro-
cedure for allocating slots during GDPs that is closely related to the well-known
Vickrey auction ([80]). To illustrate their differences from the procedures imple-

mented under CDM, it is instructive to classify them according to the general
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framework proposed by Moulin ([52], Ch. 1), who recognizes three fundamental
“modes” of cooperation - direct agreements, decentralization (by prices), and
justice. Under the mode of direct agreements, the coordinator has no active role.
Instead, agents are allowed to engage freely in direct transactions as they see fit.
Under the mode of decentralization, the coordinator’s role is to enforce certain
rules of interaction (either explicitly or implicitly, through the “invisible hand”),
The prime example is the model of competitive markets, in which agents coordi-
nate by responding to price signals. In the justice mode, the coordinator takes a
more active role: resources are allocated according to a mechanical formula that
distributes the resources equitably among the agents. Based on this classifica-
tion, the models proposed in [2], [25], and [43] correspond to the mode of direct
agreements and the mode of decentralization. Interestingly enough, however, the
procedures implemented under CDM fall under the mode of distributive justice.
As illustrated in our previous discussion, there are a number of reasons why the
use of procedures based on concepts of distributive justice (i.e. notions of equity
and fairness) may be more applicable within the context of GDPs.

While the resource allocation schemes developed under CDM are still evolv-
ing, this general interaction protocol - and in particular the notion of resource
rationing - is often viewed as a blueprint for decentralized decision-making within
ATFM, and seen as the basis for all further efforts. Given the success of CDM
and its acceptance within the airline community, this appears to be a natural
development. As the reach of these efforts expands, however, the need for a set of
guiding principles with regard to fairness and equity is becoming more and more
apparent. The allocation schemes implemented under CDM have been devel-

oped to address certain specific problems the airlines and the FAA were dealing

41



with. As a result, many of the overall fairness concepts that were introduced
have largely been left implicit. That is, there has not been a clear distinction
between the algorithms and the principles. Clearly, this complicates further
enhancements, and introduces the danger of creating another over-constrained

system with a myriad of rules and restrictions.
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Chapter 4

Fair Slot Allocation

A primary objective of the FAA’s ATM functions is to provide fair and equi-
table access to the National Air Space!. Traditionally, the FAA has interpreted
fairness as prioritizing flights on a “first-come, first-served” basis. The alloca-
tion procedures introduced under CDM, however, represent a departure from
this paradigm: airlines receive allotments of slots based on their original flight
schedules. Yet in spite of these significant changes, it is often not clear what is
meant by a fair or equitable allocation within the context of GDPs under CDM.
The embodiment of fairness under CDM is largely left implicit in the allocation
procedures (Ration-By-Schedule and Compression), and in fact, different and
even conflicting concepts are sometimes used to describe these procedures. This
not only generates frequent complaints, but also complicates the introduction
of CDM in more complex settings. This chapter therefore aims to formalize
concepts of fairness for the allocation of slots during GDPs. Using an axiomatic
approach we derive a class of potential allocation procedures, which introduce a

number of potential alternatives to RBS. We discuss the interpretation of these

see http://www.faa.gov/atpubs (order 7110.65)
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alternatives, and empirically analyze their difference with RBS.

4.1 Introduction

The allocation procedures instituted under CDM have created a connection be-
tween planned schedules and operational schedules that did not previously exist:
namely, airlines are entitled to a share of the operational resources based on their
planned schedules. In fact, the IATA scheduling guidelines (which are used to

create planned schedules at biannual conferences, see [32]) explicitly state that

“The Conferences deal with adjustments to planned schedules to fit
in with the slots available at airports. This activity has nothing to do
with adjustments to schedules on the day of operation for air traffic
flow management. The two types of slot allocation are quite different

and unrelated.”

Moreover, at the four airports (Kennedy, LaGuardia, O'Hare, Reagan National)
that fall under the High-Density rule, the slots owned by airlines are often inter-
preted as “the right to schedule or advertise a flight at a specific time” (see [19],
[65]), which entails no explicit connection to a right on the day of operation.
As such, the Ration-By-Schedule (RBS) procedure introduced under CDM has
implicitly introduced a significant change to ATM practices.

The RBS algorithm is based on the notion of “first-scheduled, first-served”,
and iteratively assigns the next arrival slot to one of the remaining flights with
the earliest scheduled time of arrival (or equivalently, its delay up to that point).
Thus, slots are assigned to flights according to a priority ordering based on their

respective scheduled times of arrival. While intuitively appealing, the use of this

44



paradigm poses a number of questions. First, it is by no means clear that RBS is
the only or even the most desirable possible allocation schemes. An important is-
sue is therefore whether other standards of comparison may be applicable within
the context of GDPs, and how they compare with RBS. The appropriateness of
using of flights, as opposed to airlines, to compare possible allocations poses an-
other question. While RBS allocates slots on a flight-basis, equity is measured
ex-post (for analysis purposes) on an airline basis. Moreover, the use of flights
as a basis for allocating delays can further be questioned by the existence of
the subsequent substitution process, which allows an airline to redistribute its
assigned delays in any way it sees fit. Consequently, all the allocation proce-
dure can possibly achieve is an allocation of the slots or delays among airlines.
Therefore, another issue is whether airline-based allocation procedures could be

more applicable.

4.1.1 Model Description

Whenever the FAA implements a GDP, air traffic managers first have to de-
termine the affected flights and the available arrival capacity. In our model we
assume these are given, that is, we let F = {fo,..., fin_1} represent the flights
in the GDP, and § = {sy, ..., s, } the slots available during the GDP. Each slot
5;(0 < j < n) has a capacity ¢; € {0,1}, and we assume that the capacity ¢, of
slot s, is unbounded. In addition, each slot s; has an associated slot time ¢;, and
we assume that the slots are equally spaced. More specifically, ¢;;1 —t; =1 for
all 0 < j < n, and ty = 0. Each flight f; has an associated originally scheduled
time of arrival oag; € 0,...,n — 1 corresponding to one of the slots. A flight’s

originally scheduled time of arrival represents the earliest time it could possibly
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land. In addition, we represent the airlines involved in the GDP by a set A. For

each airline a € A, F, C F represents the flights operated by airline a.

4.2 Delay-Based Slot Allocation

The principal output of the RBS procedure is a controlled time of departure for
each flight in the GDP; based on its assigned slot each flight is assigned a certain
amount of ground delay. In this section, we consider approaches to fair slot
allocation that are based on comparisons of the delay incurred by flights and/or
airlines. We discuss the fundamental principles underlying these methods, and

analyze key properties of the resulting allocation schemes.

4.2.1 Multi-Objective Optimization Methods

In the Operations Research literature, the equitable allocation of limited re-
sources is commonly approached by using multi-objective or goal programming
methods ([33]). While a number of allocation criteria are possible, a popu-
lar concept of equity for these problems is the so-called lexicographic minimax
criterion (see [42] for an overview of its use in a large number of resource allo-
cation problems). Given a number of resources, a set of activities, and a set of
performance functions associated with each activity, the lexicographic minimax
solution states that the resources are allocated equitably among the activities if
no performance function value can be improved without degrading an already
equal or worse-off performance function value (cf. [42]). This minimax or dif-
ference principle has its origins in the general theory of social justice proposed

by Rawls ([62]), in which the central distributive principle states that the least
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well-off group in society should be made as well off as possible (see also [66]).
The lexicographic minimax criterion provides a natural interpretation of the
notion of fairness embedded in the RBS procedure. This is shown in the following

Theorem.

Theorem 4.2.1. The flight-slot assignment obtained by the RBS algorithm lex-
icographically minimizes the maximum delay with respect to the original flight
schedule; that is, let x represent a flight-slot assignment, T" represent the maxi-
mum delay under RBS, and define for each k, 0 < k < D4z, the performance
function dy, =| {(i,7) € x : t; —oag; = k} |. Then, the allocation obtained
by RBS lezicographically minimizes the vector d = (dp, ..., dy) over all possible

flight-slot allocations.

Proof. We assume w.l.o.g. that all oag times are different. The proof follows by a
sequential exchange argument. Let A; be a lexicographical min-max assignment
and A, an assignment generated by RBS. We now will argue that A; and A,
necessarily assign the same flight to the first slot. Suppose this is not the case
so that flight f occupies the first slot, s1, in Ay, but slot s, > s; in Ay, and let
g be the flight assigned to s; in A;. It follows from the basic properties of RBS
that oagy < oag,, which implies Max{s; —oagy, s;, —oag,} <Max{s; —oag,, s —
oagys}. It then follows that the lexicographical min-max objective function can
be improved for Al by interchanging f and g. This is a contradiction to the
optimality of Al. Repeating this argument for slots 2,...,n yields the desired

result. O

In other words, the allocation obtained by RBS is such that any flight’s

allocated delay d cannot be reduced without increasing the delay of another
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flight to a value of least d. Thus, each flight is allocated a delay that is “as
close as possible” to the average delay. Under this interpretation, each flight in
the GDP is therefore entitled (or rather, responsible for) an equal share of the

resulting overall delay.

RBS Airline Proportional
A1:1200 —» S1200 A1:1200 —» S1200
A2:1202 —» S1204 A2:1202 —» S1204
A3:1204 — S1208 A3:1204 —» S1208
A4:1206 — - S1212 A4:1206 S1212
A5:1208 —» S1216 A5:1208 S1216
B1:1210 —» S1220 B1:1210 S1220
B2:1212 —» S1224 B2:1212 S1224
B3:1214 —» S1228 B3:1214 S1228
B4:1216 — ™ S1232 B4:1216 —» S1232
B5:1218 — ™ S1236 B5:1218 —» S1236

Avg. Delay: Avg. Delay:

A:20/5 = 4m A:44/5 = 8.8m

B:70/5 = 14m B:46/5 = 9.2m

Figure 4.1: Example: Airline-based Delay Allocation

Based on this principle, one could easily envision airline-based allocation
methods which would lexicographically minimize the maximum airline delay or
the average airline delay. If we were to minimize the maximum airline delay,
the implicit assumption would be that each airline is responsible for an equal
share of the delay. If, on the other hand, we were to minimize the maximum
average airline delay the principle would entail that each airline is responsible for
a proportional share of the overall delay. The potential differences between such
airline-based approaches and the RBS procedure are illustrated in Figure 4.1.
Figure 4.1 shows a simple GDP instance in which one of the airlines has its
flights at the end of the program (one could think of this as banks of flights in a
hub-and-spoke network). Note that the oag times range from 12:00 to 12:18 and

the slot time to be allocated from 12:00 to 12:36. The example shows that under
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RBS the second airline would absorb most of the delay, while an airline-based
approach could lead to a more even distribution of the delays.

The potential to reduce the disadvantage for airlines whose schedule tends
towards the end of a GDP indicates the potential attractiveness of an airline-
based approach. At the same time, however, the use of this multi-objective
approach also has disadvantages. In the example, for instance, one could argue
that the first airline is unduly penalized: only airline A can use the first slot,
yet, assigning this slot to airline A implies a larger delay for its remaining flights.
Another potential disadvantage is that the multi-objective approach does not
necessarily uniquely define the allocation of slots to airlines: there may be a large
number of “optimal” assignments with significant differences in the distributions

of the flight delays within an airline.

4.2.2 Cost-Sharing Methods

An alternate approach to the allocation of slots during a GDP follows by in-
terpreting the distribution of delays as a cost-sharing problem. Intuitively, a
cost-sharing problem is perhaps best explained by considering a production tech-
nology that is jointly owned by a given set of users (cf. [52]). Each of the users
may have certain demands, the sum of which can only be produced at a cer-
tain cost. The resulting problem is how to distribute this cost among the users.
Examples include the allocation of joint overhead costs of a firm among its di-
visions ([68]), and setting fees for the use of a communication network ([17]).
Cost-sharing problems may be categorized according to the structure of the
cost function representing the production technology (see [49]). In homogeneous

cost-sharing problems, the production technology corresponds to a “one input-
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one output” model, that is, the technology produces a single type of good. Each
user ¢ demands a quantity ¢; of the good and the total cost equals C(}_. ¢i),
with C' : R, — R,. Heterogeneous cost-sharing models, on the other hand,
correspond to technologies that may produce multiple types of goods.

An important strand of the literature on cost-sharing problems follows the
“axiomatic” approach ([49]). The axiomatic approach imposes certain normative
criteria, that is, a set of axioms that represent properties desired in a rationing
method. These axioms may represent not only equity concepts, but also struc-
tural invariance and incentive criteria (see [49]). This has led to a number of
different cost-sharing mechanisms, each of which is characterized by a different
set, of axioms. One example is the proportional mechanism, in which cost shares
are simply proportional to demands. In the case of heterogeneous demands ,
however, its application is limited, since the different goods may not be compa-
rable. Another example is the serial mechanism ([50]), which is similar to the
uniform gains rules used in rationing problems. However, this approach may
also be difficult to extend to heterogeneous cost-sharing problems ([36]). Fi-
nally, value mechanisms for cost-sharing are inspired by the Shapley value used
in cooperative games ([59]). These methods rely, in one way or another, on
the incremental or marginal cost imposed by a user’s demand. Two important
cost-sharing methods are the Shapley-Shubik and the Aumann-Shapley rules
(see [17], [45], [68]).

It should be noted that in certain situations a cost-sharing method may yield
a decentralization device, in which users may strategically submit their demands
(i.e. the rule leads to a non-cooperative game). In this case the incentive prop-

erties, in particular the strategy-proofness of the method, become important
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(see [46], [50]). However, these issues are less of a concern within the present
context: an airline’s claims/demand in a GDP are defined by the planned flight
schedule, which are fixed well before the GDP is executed and cannot be modified

on a daily basis?.

Model Formulation
Here, we interpret the allocation of slots during a GDP as a cost-sharing
problem in which the cost corresponds to the resulting delays. The basic idea
is to interpret the airport as a production technology that is jointly owned by
a set K of agents. The outputs “produced” by the airport are flight arrivals
(arrival slots), which are differentiated by their arrival time. The set of agents
can be either the individual flights or the airlines, that is, K = F or K = A. In
both cases, each agent k will demand a certain amount ¢(k) € N’} of the output
(e.g. if g(k); = 2 agent k demands two arrivals at time j). If the agents are
individual flights (K = F) the demands ¢(f) will be unit vectors, with ¢(f); =1
if j = oagy and ¢(f); = 0 otherwise. If, on the other hand, the agents are airlines
(K = A) the demands ¢(a) are defined as ¢q(a); = |{f € F, : oagy = j}|. The
aggregate demand ¢ € N7 is simply the sum of the individual demands, i.e.
4= 2 pex U(K)-
Given the capacities ¢ and an aggregate demand vector ¢, we have to de-
termine the cost, that is, the delay required to produce the arrivals demanded.
This can be done by introducing a delay vector d(c, ¢) € N}, in which an element

d;(c,q) represents the delay incurred at slot j. The delay vector can easily be

2In theory, an airline could artificially inflate its planned schedule to secure additional slots
during a GDP. This, however, appears to be highly unlikely since there are several detrimental

effects in doing this.
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defined recursively:

do(C, Q) - maX(QO — Co, 0)7

di(c,q) = max(dj_i(c,q) +¢; —¢;.0) (1 <j<n-—1).

In other words, the delay at a slot equals the number of flights at that slot
that cannot be assigned to the slot. The total delay D(c,q) is then expressed

straightforwardly as

n—1

D(c,q) = Zdj(c, q).

§=0
Under the assumption that the number of slots n and the number of agents K
remain fixed, a cost-sharing problem is then defined as the tuple (¢, ¢(k)rer). A
solution to the cost-sharing problem is a vector x € Rf specifying a cost(delay)
share for each agent such that

Z x = D(c,q).

keK

More generally, a cost-sharing method can be defined as follows.

oy . . . . NN Kxn
Definition 4.2.2. A cost-sharing method is a mapping x : N x RY*" — RE
that associates with each cost-sharing problem (c, q(k)rex) a solution, such that

Z x(c,q(k)rer)r = D(c, Z q(k)).

keK keK

O

In other words, a cost-sharing method associates with each instance of a
GDP an allocation of delays. A simple method would be to divide the costs
equally. This, however, violates a basic principle that cost shares should reflect
the agents’ contribution to the delay. This idea is taken into account in the

well-known Shapley Value, which has its origins in cooperative game theory.
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The Shapley Value

The Shapley value is based on imposing certain minimum requirements on the
possible cost-sharing methods, the so-called dummy, impartiality, and additivity
axioms. For a general cost function C' : 2% — R, which associates a cost with

each group of agents in K, these properties may be defined as follows. For any

l € K and L C K, we define §;,(C, L) = C(L+ {i}) — C(L).
Definition 4.2.3. A cost sharing method x(C') satisfies the dummy property if
5(C,L)y=0 foral LCK = 2C);=0 forali€cK.
O

Definition 4.2.4. A cost sharing method x(C')) is impartial if, for any iy,is €
K,

(51'1(0./ L) = 51'2 (C, L) fOT’ all L s.t. il, ’ig € L

O

Definition 4.2.5. Let Cy,Cy : 25 — Ry be two cost functions such that C' =

Cy + Cy. Then, a cost sharing method x(C) is additive if
z;(C) = 2;(Ch) + 2;(Cy)  foralli € K.
[l

Informally, the dummy property states that players who do not contribute to
the cost are not charged any cost. The impartiality property implies that players
who enter the cost function symmetrically are charged the same amount. The

additivity property states that if cost function can be decomposed, the resulting
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cost allocation can also be decomposed. Observe that the additivity property
directly applies to the allocation of slots in a GDP, as the cost function D(c, q)
is expressed as the sum of the delays incurred at each slot.

The Shapley value is the unique method that satisfies these three axioms,

and can be characterized as follows

Definition 4.2.6. The Shapley value x(C') is defined as

oy = 3 2l s ),

n!
0<s<n SCN—{i}:|S|=s

for0<i<N. O

Intuitively, the Shapley value can be interpreted as a (random) priority
method. For a given priority ordering of the players IV, a priority method al-
locates to each player its incremental cost, i.e., the additional cost incurred by
its addition to the coalition (after all players with a higher priority have been
added). The Shapley value assigns each agent his average incremental cost over
all priority orderings, that is, a priority ordering is chosen randomly. As such, the
Shapley value is related to the RBS algorithm. Consider, for example, the case
in which slots are allocated to individual flights. If the ordering corresponded
to the ordering of the flights by OAG times, the priority method would equal
the RBS algorithm. Thus, the Shapley value differs from RBS in that a priority
ordering is chosen randomly. If, on the other hand, slots are allocated to air-
lines, the Shapley value randomly prioritizes airlines (i.e. under any particular
ordering the airline with the highest priority would receive the “best” slots for

its flights, etc.).
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4.2.3 Issues

The Shapley value is a well-known solution concept, and is commonly applied
in cost-sharing problems (cf. [49]). When applied within the current context of
allocating slots during GDPs, however, the use of the Shapley value introduces
a number of questions. These issues can be explained using the example shown

in Figure 4.2.

GDP Instance:

Ja

fb fc

f I I
S0 S1 S92

Figure 4.2: Example: Shapley value

Figure 4.2 shows a simple GDP instance, in which flights f,, f; and f. have to
be assigned to slots sg, s1 and so. Each slot has capacity 1, and oag, = oag, = 0,
oag. = 1. Alternatively, we can also say that one unit of delay is to be assigned
at slot sg and one unit at slot s;. The Shapley value can be calculated by
determining, for each group of flights, the resulting delay if only its members

were present (i.e. the characteristic function):

e D({a}), D({b}), D({c}). D({a.c}), D({b,c}) = 0;
D({a,b}) = 1;
D({a,b,c}) = 2;
Alternatively, we can use the additivity property to decompose D into two cost
functions Dy and D;. Dy can be associated with the first unit of delay, and D,

with the second unit of delay. The resulting characteristic functions are defined

as
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e Do({a}), Do({b}), Do({c}), Do({a, c}), Do({b, c}) = 0;
DO({aa b}) DO({aa b, C}) =1

b Dl({a})a Dl({b})’ Dl({c})7 Dl({aa C})a Dl({b7 C})a Dl({a’ b}) = O;
Di({a,b,c}) = 1.

The delay distributions dy and d; that correspond to the Shapley value of these

games are easily determined:
o do(a) = do(b) = 3;do(c) = 0;
e di(a) =dyi(b) = di(c) = %§

Corresponding to this allocation of delays there is an overall slot allocation, i.e.

[ J
V)
—
—
<
SN~—
I
»
=
—
=
SN—
I
|
V)
—
—
o
SN—
I
wino

Wl

o sy(a) = sy(b) = é: s2(c) =

Note that these values may be interpreted as the probability of being assigned
a slot (i.e., so(a) represents the probability that f, is assigned to slot sg).

As discussed before, the Shapley value is the unique allocation that satisfied
the dummy, impartiality, and additivity properties. The questions that arise
from using the Shapley value in this case, however, lie in some intuitive properties
the allocation does not have. For instance, a basic fairness principle states that
allocation is fair only when every subgroup believes it be so; that is, every
subgroup should be satisfied that they share the slots assigned to them in a fair
way (cf. [86], p.170). This concept is also known as the consistency principle,

and plays an important role in a variety of allocation problems. While different

o6



Subproblems:

a assigned to 0 a assigned to 1 a assigned to 2

w.p. 1 w.p. 1 w.p. 1

Jo fe o Je o fe

I I I I I I I I I

S0 fa 1 Sa So s1:fa S2 So $1 s2: fa

Shapley value associate with each subproblem:
e a assigned to 0: do(b) = 1,d1(b) = 3;do(c) = 0,dyi(c) = ;
e a assigned to 1: dy(b) = 0,d1(b) = 0;dp(c) = 0,d1(c) = 1;

e q assigned to 2: dy(b) = 0,d1(b) = 0;dy(c) = 0,dy(c) = 0.

Figure 4.3: Example: Shapley value, Consistency

definitions of the consistency principle may exist, the basic idea is always that an
allocation rule should be invariant when restricted to subgroups of agents (e.g.,
the removal of an agent and its share should not affect the allocation of the
remaining agents). Let us now illustrate how the notion of consistency might be
interpreted within the current context, by considering the slot shares of f, and
fo in the example above. We saw that, under the Shapley value, flight f, will
be assigned slot sy with probability % Thus, with probability %, fv and f. (as a
group) will be assigned slots s; and s,. Similarly, with probability % fp and f.
(again as a group) will be assigned slots sy and sy, and with probability % they
will be assigned slots sy and s;. In each of these three cases, we could assign the
remaining slots to f, and f. according to the Shapley value. The resulting delay

distributions for each situation are shown in Figure 4.3.
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Subproblems:

a assigned to 0 b assigned to 0
w.p. 1 w.p. 1

fb fc fa fc

I I I I I I
so:fa S1 S2 so:fo s1 S2

Shapley value associate with each subproblem:
e a assigned to 0: do(b) = 1,d1(b) = 3;do(c) = 0,dyi(c) = ;

e b assigned to 0: do(a) = 1,di(a) = 5:do(c) = 0,di(c) =

Figure 4.4: Example: Shapley value, Composition

This approach, however, would yield an allocation that is different from the
one we obtained by applying the Shapley value to the overall problem in Fig-
ure 4.2. Consider for instance the delay of flight f,. In the overall problem, we
have d;(b) = % However, taking the weighted average over its delay shares in

the subproblems will yield d;(b) = 33 = . The same holds for flight f.. Thus,

o
the Shapley value does not obey this notion of consistency?®.

Another issue that arises with the use of the Shapley value stems from the so-
called Composition principle ([49], [86]). Informally, the composition principle

states that the allocation can be decomposed into stages. To illustrate this,

consider again the example in Figure 4.2. Suppose now that at first we only want

3An alternative consistency axiom can be used to characterize the Shapley value (see [86]).
However, this axiom deals with the removal of agents in a way that cannot be viewed as a

fixed assignment to a slot (see [49] for a more detailed discussion).
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to ration the first slot (a practical reason for doing so is weather uncertainty).
Subsequently, we may have to ration the remaining slots among the remaining
flights. The composition principle states that this should not affect the overall
allocation. That is, the (expected) slot shares should be the same whether we
allocate in stages or not. Unfortunately, the Shapley value does not satisfy this
concept. To see this, suppose we were to first assign flight f, or f; to slot s¢ in
the example above. This would lead to two possible cases, which are shown in
Figure 4.4. In each of these cases, we could as before apply the Shapley value
to determine the resulting delays. Again, this would yield an allocation that is
different from the one we obtained by applying the Shapley value to the overall
problem.

At the heart of these issues is the interpretation of the airport as a “pro-
duction technology” that is jointly owned by the airlines. This implies that all
flights have equal claims to all the slots, even if the flight cannot use the slot
(for instance, in the example flight f. would have a claim to one-third of slot
S0). As a result, the allocation problem will introduce a bargaining situation
in which flights will trade claims on earlier slots they cannot use for shares of
later slots. The allocation in the example, for instance, may be explained as the
result of a trade in which flight f. trades its claim on slot sq for part of the other
flights” share of slot s;. While the notion that flights have equal claims to all
the slots could potentially be a valid approach, our discussion illustrated that its
use raises some practical difficulties. Moreover, the idea that claims are traded
also raises questions, since it is public knowledge that an airline or flight cannot

use the capacity (e.g. the OAG times are known well in advance).
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4.3 Axiomatic Slot Allocation

The previous discussion leads us to ask which methods do satisfy these proper-
ties, and what principle underlie a flight’s claim to the slots. To answer these
questions, we formulate the GDP problem as a general allocation problem. We
postulate a set of axioms that are more applicable within the context of GDPs
and determine the (class of) allocation methods that satisfy these axioms. In
other words, whereas the use of the Shapley value assumes a given distribution
of slot shares, our objective is to determine a distribution of the shares. It should
be emphasized that the models and axioms we introduce are closely based on
those proposed in [48] and [51]. However, these approaches consider the allo-
cation of homogeneous demands (e.g. their models correspond to the situation
in which all flights would be scheduled to arrive at the start of the GDP). In
our case, however, the different arrival times of flights introduce heterogeneous
demands. This complication necessitates the use of a more general model, based

on the approach outlined by Young (see [86], Appendix A).

Allocating Slots to Flights

As a first step, we consider the situation in which the agents correspond to the
individual flights. To define the allocation problem we let F, the set of flights,
be the claimants and assume a given capacity vector ¢ € {0,1}". As before, we
assume the existence of a final slot s, with unbounded capacity. Associated with
each flight is its type 7y which equals its oag time, that is, 7y = oagy. We let
TE N{ represent the vector of all flight types, and 7 € Nf: the vector of types
for any subset F' € F.

Associated with each set of flights I’ and capacities c is a set of feasible and
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efficient allocations

P(F,c) = {z € {0, 1}FX" :fo,j =c¢; forall 0<j <n,
feF

Zxﬁj:l for all f € F}.

Jj=7f
Observe that the first constraint implies that all available slots are used, which
in general might not be possible. However, for any combination of capacities and
flights, an efficient (delay-minimizing) solution will always occupy the same set
of slots (see [81]). Consequently, without loss of generality it is always possible
to adjust the capacities ¢ such that the constraint will hold.

An allocation problem consists of a tuple (7g, P), where 7 represents the
types for a given set of flights ' and P C P(F,c) for some capacity profile c.
We note that the inclusion of subsets of the feasible set P(F, ¢) will become clear
in the definition of the axioms. A probabilistic allocation rule X associates with
each allocation problem (7g, P) a random selection of allocations in the feasible
set P. Thus, any allocation can also be represented as a convex combination of

the possible assignments, i.e.
X(re, P) = > Ma®™ A >0, A = L.
k k

where 2!} € P represents a possible assignment of flights to slots. In other
words, the allocation rule X (7g, P) selects each assignment 2®) with probability
Ax. Observe that X(7p, P); may be interpreted as the probability that that f
is assigned to slot j.

Two fundamental principles of equity are impartiality and consistency. Im-
partiality defines the notion that equals should be treated equally, and can be
defined as follows (cf. [86]).
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Definition 4.3.1. A probabilistic allocation rule X is impartial if for any allo-

cation problem (tp, P) and any permutation m of F,
X(tpom,Pomw)= X(1p, P) o,

where we view Tg as a function from F to N, an allocation x € P as a function

from F to N'*' and X (1r, P) as a function from F to R, O

This property states that the allocation rule is independent of the indexing
of the flights: if two flights are indistinguishable in type and in the feasible set,
they will receive the same slot shares. The consistency concept was discussed
informally in the previous section. The concept of consistency has a long history,
and has been applied in a number of different settings (see [77], [86] p.173 for
an overview). Among others, variants of the consistency principle have used in
apportionment problems ([7]), cost-sharing and rationing problems (]49]), and
bargaining problems ([76]). Here, we follow a definition of consistency proposed
by Moulin ([48]), which recognizes the probabilistic nature of the underlying
allocation problem. To formalize this concept, we define for a given feasible set

P, any f € F, and any slot index j : 0 < j < n the reduced feasible set P(f, j)

P(f,5) ={z e P:ap; =1},

which represents a set of feasible and efficient allocations for the flights in FF—{ f}

with slot s; unavailable. The formal definition is as follows.

Definition 4.3.2. A probabilistic allocation rule X is consistent if for any allo-

cation problem (tp, P) and any f € F,
X(1p, P)pry =Y X(1. P) ;X (tr—(py. P(f. ) 1.3
=0

forall f'e F—{f}, 0<j' <n. O
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In other words, the consistency property states that the expected slot shares
should be independent of the order in which flights are assigned to slots. While
imposing impartiality and consistency has a significant impact on the poten-
tial allocation rules, the class of rules that satisfy these axioms is still complex
and not easily characterizable. Nevertheless, their impact can be illustrated by

considering the case where exactly one slot is available.

Proposition 4.3.3. Let X be a consistent, impartial allocation rule, let e; rep-
resent a unit capacity vector whose capacity at slot 7 equals 1, and let T be any
demand profile. Then, there exists a set of weights /\2(0 < i < j) and a weak

ordering* =; over the OAG times 0 <1 < j such that
J
X(tr, P(F,€j))f; = % if T¢ = Tp for all f' € F, and
ZgEF )‘Tg
X(tr, P(F,e;j))s; =0 otherwise.

Proof. See Appendix O

In other words, the flights arriving at slot j are partitioned into priority
classes based on OAG times. Within each priority class, the slot is assigned
according to a probability based on the weights )\Z Note that by definition of
consistency, an impartial and consistent allocation rule can be characterized by
a collection of weights and weak orderings ()\f .= j)o<j<n- It is an open question
whether the reverse also holds.

Whereas consistency represents a certain invariance under changes in the
number of flights, the composition principle states an invariance under changes

in the capacity over time. The composition principle has its origins in so-called

4a weak ordering or preordering is an ordering relation > p that is connected (i.e. j =p 5’

or j' »p j or both) and transitive.
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——» Sot0 » Sotl » Sot2 -———- >
v v v
Co C C:

Figure 4.5: Interpretation of Decomposition Axiom

equal sacrifice rule used in taxation problems ([85]), where the principle repre-
sents an invariance under the order in which taxes are levied. Here, composition
represents the idea that the allocation can be decomposed into stages without
affecting the overall assignments. This definition closely corresponds to the def-

inition given in [47] and in [48]. The formal definition is as follows.

Definition 4.3.4. For any capacity vector ¢ and any period t : (0 < t < n)

Y

define ¢ = (co,...,¢:,0,...,0). Then, a probabilistic allocation rule X satisfies

the composition property if for any vector of types e, any capacity profile ¢ and

any time period t,
2(7r, P(F,0)) = > M (7p, Ry(F, c,2)),
k
where x(tp, P(F,ct)) = Y, Mz® and
Ri(F,c, :L’(k)) ={ze P(F,c):azs; = x}kj) forall f € F,0<j <t}

O

In other words, composition states the expected slot shares do not change if
we first allocate the slots up to period ¢, and subsequently assign the remaining

slots. A consequence of decomposition and consistency is that the allocation
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problem can be divided into a sequence of allocation problems as shown in Fig-
ure 4.5. That is, each slot may be viewed as a station which assigns its available
capacity among the incoming flights and sends the remaining flights to the sub-
sequent station.

The final axiom we impose defines a certain regularity on the manner in
which each station allocates its capacity. Specifically, the idea is that is that cost-
sharing methods should be time-independent, that is, if identical (and feasible)
demand profiles were to arrive at two different stations (slots), the capacities

should be allocated in the same way.

Definition 4.3.5. Let e; represent the unit capacity vector whose capacity at
slot j equals 1. Let jq, jo be two slots such that 0 < j; < jo <n — 1, and let Tp
represent a set of types such that 74 < ji for all f € F. Then, a probabilistic

allocation rule X is time independent if
X(1p, P(F. €)1 = X(7p. P(F,€},)) 1,ju-
O

The combination of the above mentioned axioms restricts the allocation rules
that can be used to allocate slots to flights during a GDP. To characterize the
allocation rules that satisfy the combination of these axioms, we let () represent
a priority standard, that is, a weak ordering of the OAG times 0,...,n—1. The
use of priority standards in allocative situations is discussed in more detail by
Young ([86]). More precisely, a priority standard imposes an ordering on flights
that arrive at different times, which can be used to allocate slots to flights. We
note that a priority standard is not necessarily equal to the natural ordering

imposed by OAG times, e.g. the priority of a flight arriving at time 4 could be
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less than, equal to, or greater than the priority of a flight arriving at time 6.
Intuitively, a priority method assigns slots according to a priority standard Q).
That is, a priority method sequentially assigns the slots and, at each step, the
current slot is randomly assigned to one of the remaining eligible flights that has
the highest priority according to its type 74 under P. To formalize this notion,

we introduce the following two definitions.

Definition 4.3.6. For any capacity profile ¢ and set of flights F, a solution
x € P(F,C) is equitable with respect to a priority standard Q if for any two
flights f,f' € F such that vs; = 1, zp y = 1 and j < j', then 74 =g T4 or

Tf’ >j D

Definition 4.3.7. For any capacity profile ¢ and set of flights F', the priority
method Q(F,c) based on Q consists of all solutions x € P(F,c) that are equitable

with respect to Q. O
These definitions allow us to state the following Theorem.

Theorem 4.3.8. Let ¢ be any capacity profile and F be any set of flights. Then,
for any probabilistic allocation rule X that is impartial, consistent, time inde-

pendent, and satisfies composition, there is a priority standard Q) such that

1
X(rp, P(F.c)) = Y ——a.
veome QUEC)]

Proof. See Appendix. Il
In other words, a probabilistic allocation rule randomly selects one of the
allocations in a priority method. Thus, the combination of a local decomposi-

tion in stations (which allocate slots in the same way) together with a global

consistency property leads to allocation rules that are priority methods.

66



Allocating Slots to Airlines

Theorem 4.3.8 characterizes allocation rules in which slots are assigned to
individual flights. To generalize the result to the case where slots are assigned
to airlines we define, for each airline a € A, a type vector 7, € N’ such that
Toj = |[{f € Fa : 0agy = j}|. Again, we associate with each set of airlines A and
capacity profile ¢ a set of feasible and efficient allocations

P(Ac) ={z € {0, 1} ", =¢; forall0<j<n,
a€A

J J
Zx“’j < ZTM foralla € A,0 < j<n}

k=0 k=0
n n

Zx“’j = ZTM- for all a € A}.

k=0 k=0

Now, a probabilistic allocation rule X associates with each allocation problem
(T4, P) a random allocation of slots to airlines in the feasible set.

The previously defined axioms readily generalize to the case in which slots
are assigned to airlines. Impartiality can be restated by requiring that if two
flights are indistinguishable in type and in the feasible set, they will receive the
same slot shares. The consistency axiom can be generalized by requiring that all
slot shares should remain invariant after assigning an airline its (random) share.
Similarly, the composition and time independence axioms can be adjusted by
framing the requirements in terms of allocations to airlines.

In addition to these axioms we also impose collusion-proofness, which may

be defined as follows.

Definition 4.3.9. Let ¢ represent any demand profile, and let A C A any set
of airlines. For any airline a € A, define ay, ay and their respective types Ta,, Tay

such that 74, + Tay = T, and let A" = A — {a} + {a1,a2}. Then, a probabilistic
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allocation rule is collusion-proof if
X(7a, P(A,0))a = X(7ar, P(A', €))ay j + X (7, P(A, €))ay
for all 0 < j < n. U

Informally, the idea behind the collusion-proofness property is that no airline
or group of airlines should have an advantage or disadvantage from grouping
its flights. While our model assumes all airlines and demands are known well
in advance of the GDP, the underlying idea still has some appeal within the
context of GDPs: in many cases an large carrier will manage operations for
one or several smaller carriers, and it would be undesirable if this affected their
overall allocation.

The following theorem immediately follows from Theorem 4.3.8 and the def-

inition of collusion-proofness.

Theorem 4.3.10. Let ¢ be any capacity profile, and A C A be any set of air-
lines. Then, for any probabilistic allocation rule X that is impartial, consistent,
time independent, collusion-proof and satisfies composition, there is a priority

standard @) such that

X(A, P(A,¢), Z Z Ti;.

feFa IEQ(F

O

In other words, each airline will receive the sum of the shares its flights would
obtain under a priority method. The resulting allocation rules may be viewed
as a certain proportional scheme: whereas for flights a slot is randomly assigned
to one the flights of highest priority, in the case of airlines a slot is assigned to
an airline with a probability that is proportional to the number of its remaining

flights in the highest priority class.
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Interpretation

Theorems 4.3.8 and 4.3.10 strongly suggest the use of priority methods to
allocate slots, given their appealing structural properties within the context of
GDPs. As such, the results of this section provide a strong foundation for the
RBS procedure, which corresponds to a priority standard ) where ¢ =g j iff
0 <i < j <n. At the same time, however, the Theorems state that any priority
standard yields these structural properties which could indicate a number of
alternate possibilities. One possibility in particular would be to give all flights
equal priority, that is, a priority method with the standard @) in which i >=p j
for all 0 < 4,7 < n. This is in some sense the “opposite” of RBS, as there are
no strict priorities. In this case, the resulting allocation method corresponds to
the proportional random assignment scheme shown in Figure 4.6. The use of
this priority standard is actually similar to the principle underlying the Shapley
value, in which each flight was entitled an equal share of each slot. The difference
is that in the proportional random assignment method, each flight is entitled to
an equal share of each slot it can use (i.e. that is later than its scheduled arrival
time). In the beginning of this chapter we discussed how CDM has initiated
a relationship between an airline’s scheduled demand and its rights to airport
capacity at the day of operation; that is, an airline’s flight schedule could be
interpreted as a claim on the arrival capacity available during a GDP. Under
RBS, for instance, a scheduled arrival may be interpreted as a service priority.
Consequently, the flight schedule defines for each airline a priority list, which it
can associate with the actual flights during the day of operation. The underlying
idea here is that a period of time is allocated to carry out activities and that

the time required for each activity may vary. However, the implicit assumption
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Initialization Let F, := {f; € F, : oag; = 0} and j := 0;
While j <n do :
I. If ¢; = 0, do nothing. Otherwise, randomly select an airline o’ with

probability proportional to |F.|;

II. Assign the earliest flight f € F, to s;;
Let 7, = 7 —{f'}

ML Let j:=j + L;

IV. Let F. == F., +{f; € Fo: 0ag; = j};

Figure 4.6: Proportional Random Assignment Mechanism

is that it will always be possible to carry out all the activities even when all
activities require their maximum time. Another interpretation, however, could
be that a period of time (at the airport) is allocated to carry out activities and
that participants have access to portions of that time based on the extent of their
planned activities. Now suppose that the extent of the time available varies so
that it is not possible for all participants to carry out all of their activities. This
corresponds to the proportional random assignment mechanism above, in that
time is assigned in proportion to an airline’s (remaining) demands. A such,
under the preordering in which all arrival times have equal priority, the claim
associated with each arrival corresponds to the right to land a flight at a time
greater than or equal to the OAG arrival time. Thus, based on that flight the

airline has equal rights to all slots available after that time.
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4.4 Empirical Analysis

In this section, we empirically analyze the distribution of slots and delays among
airlines during GDPs, using historical data from actual GDPs. Our analysis con-
siders the difference in delays between Ration-By-Schedule and the Proportional
Random Assignment Mechanism.

We studied the difference between the delays airlines would incur in the
ration-by-schedule and in the proportional random assignment mechanism. For
different airports, we considered a number of actual GDPs during the period
January-May 2001. For each of these GDPs we determined the delay each flight
would be assigned under RBS, and the average delay each flight would be as-
signed under the proportional random assignment mechanism. Subsequently, we
calculated the average delay for each airline. The empirical results are shown in
Figures 4.7, 4.8, and 4.9. The graphs in these figures represent, for a selected
number of airlines, the difference between an airline’s average delay under the
proportional random assignment mechanism and under RBS (a negative number
means the airline would have been allocated less delay under the proportional
random assignment mechanism). The results indicate that, on the aggregate,
there appears to be little difference in the delays incurred by airlines under the
proportional random assignment mechanism and under RBS. While substantial
differences may occur during any given GDP, there appear to be no system-
atic biases, and generally speaking these differences decrease for airlines with
larger numbers of flights during a GDP. The lack of difference between RBS
and proportional random assignment delays is somewhat surprising, given the
imbalances commonly caused by the practice of scheduling banks of flights. Sup-

pose, for instance, that airline A has a bank of flights early in the schedule, while
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Figure 4.7: Delay Comparison : Logan Airport, Boston
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Figure 4.9: Delay Comparison : Logan Airport, Boston

airline B has a bank late in the schedule. Then, one might expect that airline B
would receive significantly less delay under the proportional random assignment
method than under RBS.

To further illustrate the difference between RBS and the proportional random
assignment method, we therefore compared their differences in delay in the three
scenarios shown in Figure 4.10. These three scenarios depict different classes of
OAG schedules, parameterized by a single variable z : (0 < z < 60). The
potentially largest imbalance in the schedule occurs in Scenario 1; scenarios 2
and 3 represent situations with successively smaller imbalances. Furthermore,
the imbalance in each scenario is largest with parameter values z = 0 and z = 60.
If z = 30, the schedules for both airlines are identical. Figure 4.11 shows, for

each scenario, the differences between RBS and proportional random assignment
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Scheduled arrivals

Scenario 1

A 60 — z z

B z 60 — z

Time 0 60 120
Scenario 2

A 30-2z/2 z 30 —2z/2 z

B z 30 —2/2 z 30 —2/2

I f i i |

Time O 30 60 90 120
Scenario 3

A 10 — z oz e . z

B % 10 — g 10 — %

Time 0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.10: Example: OAG Schedule Scenarios

delays (per flight) as a function of the parameter z for airline A. To determine
the delays, we assumed that the arrival capacity during the GDP was reduced
from 60 to 30 flights per hour. We note that for parameter values 0 < z < 30,
airline A would receive more delay under RBS while for values 30 < z < 60
the RBS delays would be less than the proportional random assignment delay.
The results show that reductions in the imbalance (e.g. going from scenario 1 to
scenario 3) quickly reduce the differences in delays. While imbalances in Scenario
1 can lead to significant differences in the delay per flight, the differences are
substantially smaller in scenario 3. As such, this example may partly explain
the empirical results observed in Figures 4.7, 4.8, and 4.9.

Finally, it should be noted that the use of the probabilistic allocation schemes
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Figure 4.11: Delay Differences by Scenario

may introduce a substantial amount of variance in the delay assigned to each
airline. For instance, there is a positive probability that an airline will be as-
signed the last slots in a GDP. To illustrate this, we ran 500 replications of the
proportional random assignment mechanism for a single GDP. Figure 4.12 shows

the distribution of delays (here, the average error represents the per flight devi-
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Figure 4.12: Delay Distribution using Proportional Random Assignment
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ation w.r.t. the expected delay) over these replications for a selected number of
airlines. These delay distributions clearly show, during any given GDP, airlines
might experience significant variance in their delays. It is unlikely that such

levels of variance would be acceptable to the airlines.

4.5 Discussion

This chapter introduced a formal approach to the allocation of arrival slots during
GDPs. The basis for our analysis was the CDM-initiated notion that slots are
assigned to airlines based on claims derived from the original flight schedules.
As a first step, we introduced both multi-objective optimization methods and
methods based on concepts from cooperative game theory, i.e. the Shapley
value. Undesirable structural properties, however, led us to pursue a more direct
approach. We postulated a set of intuitively desirable properties within the
context of GDPs, and derived the class of allocation methods that satisfied them,
i.e. those that are characterized by a preordering of the arrival times.

Within this class, we identified two methods: Ration-By-Schedule and the
so-called proportional assignment method. While these methods appear to give
surprisingly similar results in actual GDPs, their underlying philosophies are

fundamentally different.

76



Chapter 5

Fair Slot Allocation: Equity As Near

May Be

The previous chapter introduced probabilistic methods for the allocation of slots
during a GDP. These methods specified fair slot shares for each airline, based on
claims derived from the original flight schedules. This chapter considers methods
that aim to approximate these shares in situations where the “ideal” may not
be attainable. The motivation for using such methods is twofold. First, we
could use these methods when the probabilistic allocation method would have
an unacceptably high level of variance (e.g. if we wanted to use the proportional
random assignment method). A second and more important reason in practice,
however, is due to the dynamic nature of GDPs. For example, flight cancellations
and delays may make it impossible to achieve the ideal share (e.g. we may view
the Compression Algorithm as approximating fair slot shares).

The organization of this chapter is as follows. First, we discuss well-known
methods for minimizing the deviation from an ideal share, and relate them to
the actual situation during a GDP. Subsequently, we discuss how these methods

can be used to manage the various dynamic changes during a GDP. Finally, we
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study the impact of using alternate standards of fairness.

5.1 Background

The problem of approximating a given fair or “ideal” share arises in a number
of situations, most notably perhaps in apportionment and balanced just-in-time
scheduling problems. This section provides an overview of these problems, in-
troduces methods used to solve these problems, and discusses their relationship
to the allocation of slots during a GDP. Subsequently, we outline the issues that

arise when applying these methods to GDPs under CDM.

5.1.1 Apportionment Problems

Apportionment problems arise in situations where a set of homogeneous indi-
visible objects must be assigned to a group of claimants in proportion to their
respective claims. Because the objects are indivisible, it is generally impossible
to give each claimant his exact proportional share (his “quota”). Therefore, the
question is how to distribute the objects such that each claimant’s share is “as
close as possible” to his quota. The classical application is the distribution of
legislative seats, e.g. when seats in the U.S. House of Representatives are to be
distributed among states in accordance with the proportions of their respective
populations (see [7]).

Within the context of GDPs, apportionment problems are analogous with
a coarse-grained approach to the allocation of slots. This is illustrated in Fig-
ure 5.1, which depicts a single-period GDP (e.g. one hour) in which C available

slots (“seats”) are to be distributed among airlines (“states”) in accordance to
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a fa,l;-"vfa,na
b Josoos fom, Delayed: n — C'
Period i Capacity: C

Figure 5.1: Slot allocation by apportionment

their respective demands (“populations”) in the flight schedule. The problem
can be formalized as follows: given a set of airlines A, their respective numbers
of flights n, with n =3 _,n, and a capacity C, we have to find an allocation
x € N{' such that 3", 2, = C and the differences between all the allocations
z, and their quota g, = Cn,/n are as small as possible. The key, of course, is
the measure of deviation.

One common approach, known as Hamilton’s method, operates by first as-
signing each airline |g,| slots (its lower quota) and the remaining slots in de-
scending order of the fractional parts ¢,—| g, |. Solutions obtained by this method
optimize the objective function min max,e 4 |z, — ¢a|, as well as other objectives
(see [86]). A desirable property of the solutions, which follows by construction,
is that they satisfy quota, ie. [¢.] < x, < [q,] for all @ € A. An undesirable
property, however, is that the procedure is not monotone, i.e. an increase in the
capacity C' could lead to a decrease in the slots assigned to an airline (this is
also known as the famous “Alabama paradox”, cf. [86]).

This questionable feature has led to a number of other approaches, the most
prominent being the so-called divisor methods. In a divisor method, slots are

allocated iteratively to airlines: at each iteration a slot is assigned to the air-
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line whose value of the quotient n,/d(z,) is the highest, where z, is the num-
ber of slots already assigned to a and z, < d(x,) < z, + 1. A particularly
attractive procedure results from letting d(z,) = z, + %, this is called Web-
ster’s Method. Solutions obtained by Webster’s method minimize the function
> wea(®a = Ga)?/nq. Moreover, in addition to the monotonicity property, this
method also has a number of other desirable features, such as consistency and

unbiasedness (see [86] for a discussion of these properties).

5.1.2 Balanced Just-In-Time Scheduling Problems

A closely related, but somewhat finer-grained, approach to the allocation of slots
during a GDP can be obtained by an analogy with the so-called Product Rate
Variation (PRV) problem. The PRV problem arises in the determination of the
sequence schedule for producing different products on a mixed-model assembly
line, and has been studied extensively ([6], [13], [38], [39], [44], [69]). In certain
just-in-time production systems, it is desirable that the quantity of each part
used in the assembly process per unit time is kept as constant as possible; this is
called levelling or balancing the schedule. Under certain assumptions (see [44]),
this may be achieved by minimizing the variation in the rate at which successive
units (“flights”) of different product types (“airlines”) are produced in the line.
An instance of the PRV problem is given by a set A of different product
types (“airlines”), and a vector n,(a € .A) which represents the demand for
each product type (“flights”). The production of each unit requires one unit
of time. Given the total demand n = ) _,n,, an “ideal” production rate
for product type a can be defined as r, = n,/n. The idea behind the ideal

production rate is that at each instant we would like the production of a to
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IP FORMULATION:

Min G(z,r)
subject to:

> aed Tak =k forallkel,...,D
Tak < Tak+1 forallkel,....n—1l,a€ A
Tan = Ng foralla e A

T > O(integer)

Figure 5.2: TP formulation of the PRV problem

be in proportion to r,, which would yield a perfectly levelled schedule. Such a
schedule, however, is never attainable, and the objective of the PRV problem is
to keep the actual production of each product somehow “as close as possible” to
the ideal rate. Clearly, the PRV problem is closely related to the apportionment
problem; however, whereas the apportionment allocates a fixed quantity C', the
PRV problem seeks an apportionment for all quantities C' between 1 and n
(see [6], [13] for a discussion of their relationship). In particular, monotone
methods of apportionment could also be used for the PRV problem (i.e., if we
used a monotone method to solve the apportionment problems for all quantities
between 1 and n, the resulting allocations would define a feasible production
schedule).

The PRV problem can be formulated as an integer programming problem, as
shown in Figure 5.2. In this formulation, z;; represents the number of items of
product ¢ produced by time k. Consequently, the first constraint states that k

units have to be produced during the first £ periods, and the second constraint
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states that a product’s cumulative production cannot decrease. The third con-
straint states that all demands should be satisfied after the final period. Obvi-
ously, the key to the formulation lies in the specification of the objective func-
tion G(x,d), which measures the aggregate deviation from the ideal production
rates. As in the case of the apportionment problem, however, a number of dif-
ferent possible measures have been proposed. One possibility is to minimize the
total deviation ( [39],[44]), which could be achieved using the objective function
G(2,7) = 3, 1 (Tap — kra)?. Another possibility is to minimize the maximum
deviation from the ideal production rates ([69]), using the objective function
G(z,r) = max,y |Tar — kre|. With either objective, the resulting optimization
problem will be a non-linear integer program; in general, however, these can be
solved efficiently (this will be discussed later).

A somewhat different approach to the PRV problem ([34]) worth mentioning
is based on the notion of an ideal position (or due date) p, x for the k-th unit of
product type a, which is defined as p,r = (k — %) /7a. Under this approach the
objective is to minimize the deviations between the ideal position p,j and the
actual position ¢, at which the the k-th unit of a is produced. This can be done
(see [34]) by applying the earliest due date rule, using p, x as the due dates. It is
interesting to note that this method is actually equivalent to Webster’s method

of apportionment (see [13]).

5.1.3 Approach

The apportionment problem and in particular the PRV problem are closely re-
lated to the allocation of slots during a GDP. The primary difference, however,

is that during a GDP not all flights are present initially; in other words, the
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demands associated with each airline may have release times. This is illustrated

Release times defined

no. by flight schedule

flights

Ideal shares qq

Cumulative allocation x,

0 n  slots

Figure 5.3: Share deviation in GDPs

in Figure 5.3, where the thick line may be interpreted as the cumulative demand
of an airline at each time instance.

As a result, the proportional rates/shares used in the apportionment and
PRV problems may no longer be applicable. This, however, may be addressed
using approaches based on the results from the previous chapter, where we de-
rived fair slot shares under the assumption that slots were divisible (e.g. by
allowing random assignments). This corresponds to the definition of quota in
the apportionment and PRV problems, which were similarly based on relaxing
the indivisibility assumption. Thus, given an allocation rule X (e.g. correspond-
ing to RBS or the proportional random assignment), we could define quota as
da,k = Z?:o Xa,j-

At first sight, the approximation of fair shares therefore appears to be appli-
cable primarily if proportional random assignment is used to define fair shares,
since RBS already yields an assignment that (nearly) corresponds to the fair

shares. As stated before however, an additional reason for studying this model
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is the dynamic nature of GDPs: during the course of a GDP, flights may be can-
celled, delayed, etc. These changes impose additional constraints on the possible

allocations, and make achievement of ideal shares impossible even under RBS.

5.2 Managing Flight Cancellations and Delays

During the course of a GDP flights are frequently cancelled and/or delayed,
leading to suboptimal utilization of the airport’s arrival capacity. This section
describes an approach that deals with flight cancellations and delays based on the
idea of approximating fair airline shares. As such, the procedure we introduce
may be viewed as an alternative to the Compression Algorithm that is currently
used under CDM. However, whereas Compression is based on the notion of an
inter-airline slot exchange, the procedure discussed here may simply be viewed
as a form of rerationing. Consequently, this procedure unifies both RBS and
Compression, leading to a single resource allocation mechanism to be used during
GDPs.

The general concept assumes we have defined fair shares g, for each air-
line that are independent of the actual allocation and remain constant for the
duration of the program. In the remainder of this Chapter, we assume these
shares are obtained using the first-scheduled, first-served principle (as in RBS).
Whereas fair shares remain constant, dynamic changes may occur to each air-
line’s input data. An airline’s input data can be represented by (1) the set of
cancelled flights F'¢ and (2) for each flight f an earliest arrival time e;. We note
that ey in general can be equal to or later than the flight’s oag time, due to

upstream delays, crew or mechanical problems, etc. Together, these parameters
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Figure 5.4: Demand changes from flight cancellations and delays

can be used to define each airline’s cumulative demand (or release time) profile
{Ear}ie,, where

E.rn={f € F,JF° :e; <k}

Thus, any change in an airline’s input data can be interpreted as a change to
its cumulative demand profile. This is illustrated in Figure 5.4, which shows the
effects of flight cancellations and flight delays.

Generally speaking, the GDP process would operate as follows. The FAA
continuously monitors airline updates and adjusts each airline’s demand profile
accordingly. If, based on these demand profiles, the current allocation were
infeasible or suboptimal, the rationing procedure described in the next Section
would be executed. The procedure would also be used to initiate the GDP (this
would be analogous to first executing RBS followed by Compression, which is

currently common practice).
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IP FORMULATION:

Min Za’j (Taj — qaj)? Or MaXy; |Te; — qaj
subject to:
Y acd Saj = Cj forall j€0,...,n—1
Ta0 = Sap for all a € A
Tgj41 = Saj+1 + To; forallae 4,5€0,....n—1
To; < By j forallae 4,5 €0,....n—1

Tqj, Saj > O(integer)

Figure 5.5: TP formulation of the slot allocation problem

5.2.1 Model Formulation

The resulting allocation problem is similar to the PRV problem, with the only
added complication coming from the bounds imposed by the cumulative demand
profiles. As such, we can use any approaches for the PRV problem to allocate
slots during a GDP. One possibility is to minimize the total or maximum devi-
ation. This leads to the formulation shown in Figure 5.5, where the cumulative
demand profile bounds are incorporated by additional constraints.

Here, q,,; and E, ; are as defined before, and c represents the capacity vector.
Observe that, as in Chapter 4, we assume that the capacities are such that all
available slots will be used (i.e. the first constraint is posed as an equality). The
variable s, ; equals 1 if slot j is assigned to airline a, and 0 otherwise. Again,
x,,; represents the cumulative number of slots assigned to a by time j.

With either objective, the formulation in Figure 5.5 results in a non-linear

integer program. Both cases, however, can be solved efficiently. With the total
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deviation objective function, the resulting model can be reformulated as a net-
work flow problem (for a similar approach, see [38], [39]). To illustrate this, we

redefine z, ; as
Ga,j—1

La,j = Qa,j — § Uq,j,1 + E Oq,j,l

da ]+1

where 0 < u,7,04,;; < 1. Under this formulation u, ; = 1 iff at most [ slots
are assigned to a by time j, and o, ;; = 1 iff at least [ slots are assigned to a
by time j. Observe that if x,; is substituted out, this reformulation preserves
the underlying network structure of the constraints. A linear objective function
can now be obtained by introducing appropriate coefficients for the variables
Uq,j; and o, ;. With each variable u, ;;, we associate a coefficient v, ;;, which is
defined as
Vi = (I —kaj)* — (14+1 =k, )

Observe that v, ;; > 0, and that v, ;-1 > v,,;. With each variable o, ;;, we

associate a coefficient w, ;;, which is defined as
Wajo = (= kaj)® = (1 =1 = kaj)*.

Again, v,;; > 0, and v, ;41 > vejs. The resulting objective function will

therefore be

Qa]

E : E , va,J,lUfm,l+§ : E , Wa,j,10a,j,15
7.] =0

a,J kq,;+1
and it is easy to see that the resulting network flow problem yields optimal
solutions that are also optimal for the original problem.
In case of the maximum deviation objective, the problem can be solved by a
sequence of network flow problems (see also [69]). To illustrate this, let us con-

sider the question of deciding whether there exists a solution x to the constraints
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in Figure 5.5 for which
G(z,i) = II;:‘J}X|CL’GJ — .| < B.
Of course, a solution = will only satisfy this condition iff
II;’&}XMQJ — ol <B forallae A.j€0,....,n—1.
This, however, is equivalent to the conditions
Toj < |quj+ B, %a; >[qu; —B] forallae A,j€0,...,n—1. (5.1)

Consequently, a solution for which G(z,i) < B exists iff it satisfies both the
constraints in Figure 5.5 and the constraints in 5.1. Thus, the decision problem
reduces to the problem of finding a feasible flow, which can be done efficiently.
In fact, the special structure of the constraint set can be exploited to achieve a
highly efficient procedure (see [69]). Given such a procedure, the overall problem
can be solved by performing a bisection search procedure over B.

Another possibility is to use an approach that is based on the notion of an
ideal position for the k-th flight of each airline a (that is, the approach discussed
in [34]). In this case, the objective is to minimize the deviation between an
(appropriately defined) ideal position p, s for the k-th flight of airline a and the
actual position of a’s k-th flight. If the underlying fair shares are based on the

RBS procedure, the ideal positions p, , can be defined as follows

Pak = min ]
5200 >k

that is, the ideal position for airline a’s k-th flight corresponds to its k-th slot in
the RBS schedule. Note that by definition of the RBS shares, each slot defines

an ideal position for a single airline. Given the current demand profiles E, ;, for
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IP FORMULATION:

Min Yok U = Pak)’Tak
subject to:
ZaeA’k:ea’ij Tk = Cj forall j€0,...,n—1
D jiea <icn Taky = 1 forallac Akel,...,E.n

Tk, > 0(integer)

Figure 5.6: Alternative IP formulation of slot allocation problem

each airline, we can furthermore define the earliest arrival time e, of the k-th
flight as

€ur = 1nin .
G >0:Ba >k

The resulting IP formulation is shown in Figure 5.6, where z, ; = 1 if a’s k-th
flight is assigned to slot j, and 0 otherwise.

The formulation in Figure 5.6 corresponds to an assignment problem, and
can therefore be solved efficiently. However, a simpler procedure (similar to the
earliest due date algorithm) that finds optimal solutions exists, and is shown
in Figure 5.7. In this procedure, each airline is assigned a set of (remaining)
priorities corresponding to its ideal positions. The procedure repeatedly assigns
the next available slot to the airline which has the highest remaining priority
among all airlines that can use the slot. The correctness of the procedure is

insured by the following theorem.

Theorem 5.2.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6.

Proof. See Appendix. O
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Init :

Let P, := UkEif {par} foralaec A

Let zgk; :=0,k,:=1forallac A,j€0,....,n—1
For j€0,....n—1:¢;=1Do

Let A':={a€ A: ch;ll Z{:—ll Topt < Faj}

Let p, := minyep, p

Let @' := argmingec pa

Let 2y g, j =1, Py = Py —{pa}, ko = ko + 1

Od

Figure 5.7: Greedy Algorithm for slot allocation problem

5.2.2 Comparison

The “total deviation” model and the “ideal position” model define two possible
approaches to the management of flights cancellations and delays during a GDP.
These procedures could be executed periodically, whenever changes in airline
demand profiles (due to cancellations and delays) cause the current schedule
to be infeasible or suboptimal. This section illustrates their differences, and

compares their resulting allocations with the Compression procedure.

Total Deviation vs. Ideal Position

Intuitively, the difference between the total deviation approach and the model
using ideal positions can be illustrated by the example shown in Figure 5.8.
The example shows an initial schedule in which all flights are assigned their
ideal position, but where the first three flights are subsequently delayed. Under

the total (or maximum) deviation model, slot 3 would be assigned to airline b,
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Initial Assignment:

fa,l fb,l fb,2 fc,l fc,2 fc,3

0 1 2 3 4 )

Demand profile changes:

€a,1, €h,15€p2 = 3

Total Deviation Model Assignment:

fc,l fc,2 fc,3 fb,l fa,l .Ifb,Q

0 1 2 3 4 5
Ideal Position Model Assignment:

fc,l fc,? fc,S Ifa,l Ifb,l .Ifb,Q

0 1 2 3 4 5

Figure 5.8: Comparison: Ideal Position vs. Total Deviation

whereas the ideal position model would allocate slot 3 to airline a. Intuitively,
the reason is that the total deviation model favors the airline with the highest
number of flights that can use the slot, while the ideal position model favors the
airline with the earliest flight that can use the slot.

A more general difference between the methods stems from the so-called
monotonicity condition. The monotonicity condition states that if an allocation
x is optimal with respect to the first k slots, there exists a solution y that is
optimal with respect to the first k + 1 slots such that y > x. It can be shown
(see [13]) that the total and maximum deviation models need not the satisfy
the monotonicity condition; the model based on ideal positions, however, is
monotone by construction.

Overall, it appears therefore that the model based on ideal positions may be
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a more applicable approach within the context of allocating slots. Allocations
can be obtained using a basic greedy procedure, and the general approach is

analogous to the priorities that were the basis for determining the fair shares.

Relationship to Compression Procedure

The total deviation model and the ideal position model provide alternatives
to the Compressionprocedure. The greedy procedure associated with the ideal
position model, in particular, is closely related to the Compressionalgorithm:
both procedures repeatedly assign slots according to a priority ordering. Yet in
spite of their similarities, there are also a number of key differences. The first
difference is in the basis for the priorities (ideal positions). Under compression,
these are based on the current assignment, whereas under the greedy procedure
they remain constant (based on the original schedule) throughout the duration of
the GDP. Another difference is the order in which slots are assigned to flights: the
greedy procedure assign the slots in sequence, while the Compressionalgorithm
repeatedly assigns the slot that has been vacated by a flight movement. The
impact of this difference is illustrated in the example in Figure 5.9.

The example starts with an initial schedule in which all flights are assigned
their ideal position, but where the first two flights have been cancelled. The
Compression Algorithm will first move up flight f.; to time 0 and flight f, 2 to
time 2. Subsequently, flight f;o will be moved up to time 1 and flight f;; to
time 3. The greedy procedure, on the other hand, will allocate the four slots
sequentially, leading to a different assignment. A final difference between these
procedures is that the Compressionalgorithm only moves up flights (that is, it

insures that flights do not lose their current positions). In contrast, the greedy
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Initial Assignment:

Jap(enx) foa(enz) fci,l(o) fz?,2(1) fciz,l(Q) f?,2(1)

0 1 2 3 4 5

Compression Assignment:

fen Jo2 a2 Jaa . .
0 1 2 3 4 5

Greedy Procedure:
.fc,l .fa,2 .fb,2 .fd,l

0 1 2 3 4 5

Figure 5.9: Comparison: Compression vs. Greedy Procedure

procedure does not explicitly take the current assignment into account. This,
however, is only an apparent difference, caused by peculiarities in the imple-
mentation of the Compressionalgorithm. Specifically, in cases where a flight is
delayed and the slot it has been assigned to cannot be used, the Compression-
algorithm may maintain an infeasible solution by creating a new “slot” for the
delayed flight.

We compared the greedy procedure with the Compression Algorithm using
four scenarios derived from real-world GDPs. Three of the data sets that were
used represented GDPs at Newark International Airport (EWR), while one of
the data sets considered a GDP at Los Angeles International Airport (LAX). The
data gathered for each Compressionscenario consisted of the flights and slots in
the GDP, the initial assignment of flights to slots, the earliest arrival times for
each flight, and the set of flights that were cancelled. The four scenarios are

summarized in Table 5.1.
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Table 5.1: Problem Characteristics

EWR EWR EWR LAX

01/01/96(1) | 01/01/96(2) || 01/02/96 | 01/01/97

Number of Flights 73 94 54 62
Number of Cancellations 12 21 6 10

For each of the scenarios we ran both the greedy procedure and the Com-
pression Algorithm. The results are shown in Tables 5.2 through 5.5. The tables
show for both procedures the absolute and the relative delay savings for each
airline (delay savings are measured in minutes). In addition, the tables show
for each airline the baseline savings, that is, the reduction in delay each airline
would have been able to achieve by itself. Baseline savings provide a convenient

basis for comparison of delay reduction on an airline-by-airline basis.

Table 5.2: Delay reduction for Scenario EWR, 01/01/96(1)

Airlines Comp Comp Opt Opt || Baseline | Baseline
Absolute | Relative || Absolute | Relative || Absolute | Relative

COA 402 46.53 406 46.99 281 57.00
UAL 200 23.15 195 22.57 142 28.80
TWA 17 1.97 17 1.97 0 0.0
AAL 123 14.24 126 14.58 70 14.20
ACA 2 0.23 0 0.00 0 0.0
USA 38 4.40 38 4.40 0 0.0
BSK 2 0.23 2 0.23 0 0.0
NWA 19 2.20 19 2.20 0 0.0
AWE 14 1.62 14 1.62 0 0.0
DAL 19 2.20 19 2.20 0 0.0
KMR 3 0.35 3 0.35 0 0.0
CAA 0 0.0 0 0.00 0 0.0
LOT 2 0.23 2 0.23 0 0.0
SJI 10 1.16 10 1.16 0 0.0
COM 13 1.50 13 1.50 0 0.0
TOTAL || 864 | 100.00 | 864 | 100.00 | 0 0.0
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Table 5.3: Delay reduction for Scenario EWR, 01/01/96(2)

Airlines Comp Comp Opt Opt || Baseline | Baseline
Absolute | Relative || Absolute | Relative || Absolute | Relative
FDX 0 0.0 0 0.00 0 0.0
COA 521 50.63 524 50.92 420 75.0
NWA 79 7.68 7 7.48 0 0.0
ACA 4 0.39 4 0.39 0 0.0
UAL 171 16.62 168 16.33 68 12.14
AAL 81 7.87 81 7.87 72 12.86
USA 84 8.16 87 8.45 0 0.0
DAL 29 2.82 29 2.82 0 0.0
DLH 0 0.0 0 0.00 0 0.0
TWA 2 0.19 2 0.19 0 0.0
BSK 6 0.58 5 0.49 0 0.0
AWE 6 0.58 6 0.58 0 0.0
BAW 6 0.58 6 0.58 0 0.0
KMR 16 1.55 16 1.55 0 0.0
LOT 24 2.33 24 2.33 0 0.0
TOTAL | 1029 100.00 | 1029 ] 100.00 || 560 | 100.00 ||
Table 5.4: Delay reduction for Scenario EWR, 01/02/96
Airlines Comp Comp Opt Opt || Baseline | Baseline
Absolute | Relative || Absolute | Relative || Absolute | Relative
COA 231 64.71 270 75.63 167 85.20
ACA 40 11.20 10 2.80 0 0.0
SJI 3 0.84 3 0.84 0 0.0
COM 2 0.56 2 0.56 0 0.0
N4I 2 0.56 2 0.56 0 0.0
UAL 60 16.81 60 16.81 29 14.80
MXA 2 0.56 0 0.00 0 0.0
NWA 5 1.40 0 0.00 0 0.0
VIR 3 0.84 3 0.84 0 0.0
TWA 3 0.84 3 0.84 0 0.0
PAL 2 0.56 0 0.00 0 0.0
AJM 1 0.28 1 0.28 0 0.0
USA 1 0.28 1 0.28 0 0.0
AAL 1 0.28 1 0.28 0 0.0
CAA 1 0.28 1 0.28 0 0.0
TOTAL || 357 | 100.00 || 357 | 100.00 || 196 | 100.0 |




Table 5.5: Delay reduction for Scenario LAX, 01/01/97

Airlines Comp Comp Opt Opt || Baseline | Baseline
Absolute | Relative || Absolute | Relative || Absolute | Relative

UAL 153 42.62 142 39.55 127 53.59

AAL 72 20.06 66 18.38 70 29.54

SWA 25 6.96 32 8.91 18 7.59

TWA 38 10.58 38 10.58 0 0.0

ASA 6 1.67 6 1.67 0 0.0

SER 0 0.0 0 0.00 0 0.0

DAL 8 2.23 8 2.23 0 0.0

FDX 4 1.11 4 1.11 0 0.0

RKT 2 0.56 4 1.11 0 0.0

ROA 9 2.51 9 2.51 0 0.0

AMX 2 0.56 8 2.23 0 0.0

ANZ 2 0.56 4 1.11 0 0.0

AWE 0 0.0 0 0.00 0 0.0

USA 24 6.69 24 6.69 22 9.28

COA 2 0.56 2 0.56 0 0.0

NWA 6 1.67 6 1.67 0 0.0

FFT 6 1.67 6 1.67 0 0.0

TOTAL || 359 | 100.00 | 359 | 100.00 | 237 | 100.00 ||

An airline will always achieve this amount of delay savings, and the fact that
more total savings are possible is exactly due to inter-airline reallocation of
slots. The results in Tables 5.2 through 5.5 indicate that the greedy procedure
results in flight-slot assignments that are very similar to those obtained by the

Compression Algorithm.

5.3 Managing Flight Exemptions

In addition to flight cancellations and delays, the numerous flight exemptions

that may occur during actual GDPs may also have a significant impact on the
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allocation of slots. Flights may be exempted during a GDP for various reasons:
a flight may have departed already, in which case it cannot be assigned ground
delay, and in some cases flights from certain departure airports (or centers) are
explicitly exempted. Typically, this is done for long-haul flights, so as to prevent
potentially unrecoverable delays that might be caused by the uncertainty in the
weather predictions. Currently, flight exemptions are managed on a somewhat
ad-hoc basis: exempted flights are assigned slots first, followed by the allocation
of the remaining slots to the non-exempted flights. The manner in which exemp-
tions are managed, however, can have a significant impact on the distribution
of delays among airlines. To illustrate this, we analyzed the impact of flight
exemptions using historical data. For a number of GDPs, we determined the
delays for each airline with and without the exemptions that occurred during
that day. The results are shown in Figures 5.10, 5.11, and 5.12.

The graphs in these Figures represent, for a selected number of airlines, the
difference between an airline’s average delay under RBS without exemptions
and under RBS with exemptions included (a negative number means the airline
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Figure 5.10: Exemption Impact : Logan Airport, Boston
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Figure 5.12: Exemption Impact: O’Hare Airport, Chicago

would have been allocated less delay if exemptions were not taken into account).
The adjacent table in each Figure shows the average delay per flight for each
airline, aggregated over all GDPs.

The results clearly show that exemptions may have a significant impact on the
distribution of delays. Moreover, they illustrate that exemptions may introduce a
systematic bias in favor or against certain airlines. At Boston’s Logan airport, for

example, USA and UCA (a small commuter airline) appear to have a systematic
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disadvantage; the reason for this likely is that most of their flights are short-haul
(these flights are rarely exempted). Similar results also hold for San Francisco
airport. At Chicago O’Hare airport, the differences are less pronounced; here,
however, it appears that the larger airlines are at a systematic disadvantage. In
the remainder of this section we propose allocation methods that incorporate
flight exemptions, and analyze their impact on the overall distributions of the

delays among airlines.

5.3.1 Model Formulation

To incorporate exempted flights, we assume as before that the capacities ¢ are
given, and that the quota g, and demand profiles F, ; are known. In addition,
however, we now have a set F'° C F' of exempted flights. Each of these flights has
a current estimated time of arrival etay. Since exempted flights may be airborne,
each flight will have to be assigned to the slot corresponding to its estimated
time of arrival. In the remainder of this Section we assume that this is always
possible, that is, [{f € F°: etay = j}| <1 for all periods j.

Under current procedures, exempted flights are assigned first, and RBS is
used to assign the remaining flights to the remaining slots. Here, we take a
different approach: we minimize, as before, the overall deviation from the ideal
airline shares, but take into account exemptions by imposing the additional
constraints that each airline is assigned the slots corresponding to its exempted
flights. As such, exempted flights no longer have a strict priority. For the total

deviation model, this can be done by adding the additional constraints

Saeta; = 1 forallae A, feF,NF*
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to the formulation shown in Figure 5.5. We note that this will preserve the
network structure of the resulting formulation, since we only fix the values of
certain variables.

For the approach based on ideal positions, shown in Figure 5.6, exempted

flights may be incorporated by adding the constraints

Ean
Z xa,k,etaf =1 forallae ./4, f S fa N F°. (52)

k=0
This constraint states that one of airline a’s flights (i.e. its first flight, second
flight, etc.) should be assigned to the slots corresponding its exempted flights.

It is important to note, however, that with the added constraints the greedy
procedure used in the previous Section to solve the ideal position model (or a
variant thereof) does not necessarily give an optimal solution. Nevertheless, the
use of a greedy procedure has an intuitive appeal within the context of GDPs,
and in the remainder of this section we outline a possible allocation procedure
that accounts for exempted flights.

To motivate this procedure, we first consider a model in which the constraints
imposed by the exempted flights are relaxed. This would allow us to use the
same approach as in the previous Section: where the cumulative demand profiles
imposed upper bounds on the slots assigned to an airline by a period, flight
exemptions would impose lower bounds. Formally, we define these lower bounds
as

Lo;=|{feF.NF:etaf <j}| forallac A, je€0,...,n—1

In other words, L, ; represents the number of flights that should have been
assigned to a by time j. It is fairly straightforward to incorporate these lower

bounds into the models proposed in the previous Section. For the approach based
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Figure 5.13: Modified Greedy Algorithm
on ideal positions, which is shown in Figure 5.6, we would add the constraints
Zor; =0 forall a,k, j such that L, ; > k. (5.3)

The resulting optimization model can be solved using the modified greedy proce-
dure shown in Figure 5.13. Intuitively, the greedy procedure proceeds as before,
except when a flight is due: in that case, the slot is assigned to the corresponding

airline. The correctness of the procedure is shown by the following theorem.

Theorem 5.3.1. A solution x obtained by the greedy algorithm shown in Fig-
ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6 with

constraints 5.3 added.

Proof. See Appendix. O
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Given that we relaxed the constraints imposed by the exempted flights, the
use of lower bounds may not always yield feasible solutions. To illustrate this,
consider an airline that has two flights f; and f, with associated earliest arrival
times e; = 0 and e; = 4. Flight f> has been exempted and has etas = 5. Thus,
we have E, ; = 11if j <4 and £, ; = 2 otherwise. Similarly, we have L, ; = 0 if
J < b and L,; = 1 otherwise. According to these bounds, it would be possible
that a was assigned its first flight at time 3 and its second flight at time 6, which
may not be feasible for flight f;. In other words, the lower bounds become
flight dependent. Nevertheless, the procedure indicates a potential alternative
approach: we proceed with the greedy procedure as before, except when an
exempted flight needs to be assigned (as opposed to a flight that is due). In that

case, the slot is assigned to the corresponding airline.

5.3.2 Comparison

The empirical analysis at the start of this section indicated that the current
procedures for managing exemptions may introduce systematic biases against
some carriers. Here, we analyze the extent to which the optimization models are
able to mitigate these biases. Moreover, we study how these optimization models
impact the distribution of delays within an airline, as well as their impact on
the delays by aircraft size.

First, we compared the delay obtained under RBS and the delay that would
have been obtained using the optimization model based on ideal positions (with
the constraints in equation 5.2 incorporated). The results for Logan airport are
shown in Figure 5.14. Figure 5.14 represents, for a selected number of airlines,

the difference between an airline’s average delay under RBS without exemptions
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Figure 5.14: Optimization Model results : Logan Airport, Boston

and under the optimization model (a negative number means the airline would
have been allocated less delay if exemptions were not taken into account). It is
instructive to compare Figure 5.14 with Figure 5.10, which shows the difference
in delay between RBS and the current procedures. Clearly, the optimization
model has a significant impact and is able to reduce the biases substantially.
This is further illustrated in the table shown in Figure 5.14, which shows the
differences in delay for both the current procedures and for the optimization
model.

In addition, we also analyzed the delay changes that would have been ob-
tained using the modified greedy procedure. While, as we discussed, this proce-
dure will not necessarily achieve optimal solutions (i.e. minimize the deviation
from optimal position), we still believe that the simple and intuitive nature of
the procedure might make it a potentially attractive alternative. The table and
graph in Figure 5.15 show the delay differences that would have been obtained
using the greedy procedure as opposed to the optimization model, using the

same data from GDPs at Logan airport. As expected, the results are not as
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Figure 5.15: Greedy Procedure results : Logan Airport, Boston

pronounced as those using the optimization model. Nevertheless, the greedy
procedure still yields allocations that are substantially closer to the ideal RBS
share than those that would have been obtained using the current procedures.
While these results clearly indicate the potential to mitigate the exemption
bias, the use of optimization-based allocation methods can also have a significant
impact on the the distribution of delays within an airline. Potentially, such
changes in the delay distribution could have detrimental effects: if, for example,
the resulting allocations would significantly increase the percentage of flights with
excessive delays, it might be difficult for an airline to recover (part of) its schedule
with flight cancellations and/or substitutions. The optimization model’s impact
on the distribution of delays is shown in Figure 5.16. Figure 5.16 depicts, for
a selected number of airlines, both the distribution of delays that was obtained
under RBS and the distribution of delays that would have been obtained by
the optimization-based approach. To determine these distributions, we used the
same GDPs at Boston’s Logan airport as in the previous experiments. In each

of the graphs, the solid lines represent the distribution of delays under RBS,
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Figure 5.16: Delay Distribution Impact: Logan Airport, Boston

whereas the dashed lines represent the distribution of delays that would have
been obtained using the optimization-based approach. The results in Figure 5.16
indicate that, on the aggregate, the use of the optimization model appears to have
a relatively minor influence on the distribution of delays. The impact is most
severe for United Airlines (UAL), which would see a sizeable increase in large
delays (> 180 minutes). Intuitively, the reason for this is that UAL has a high
percentage of flight exemptions (approximately 60% of its flights are exempt),
while it has a relatively small number of flights in a GDP (approximately 18
flights per GDP). As such, there will be little opportunity to shift the delay
"benefits” absorbed by the exempt flights to its non-exempt flights. Further
evidence of the robustness of the delay changes is found in Figure 5.17, which
depicts the distribution of delay changes (that is, a flight’s delay under the
optimization model minus its delay under RBS) for the flights of the same set of

airlines. The results are again aggregated over the same set of GDPs at Boston’s
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Figure 5.17: Distribution of Delay Changes by Airline: Logan Airport, Boston

Logan airport. In particular, Figure 5.17 illustrates that approximately 95% of
the flights would receive a delay increase of at most 30 minutes if the optimization
model was used.

Finally, we also analyzed the changes in delay over different classes of aircraft
sizes. Figure 5.18 represents the flight delay changes for three FAA-designated
classes of aircraft: Small, Large, and Heavy (this classification is based on an
aircraft’s pounds of wake vortex, as its primarily used for flight separation). On
average, the optimization-based approach will reduce the delay of aircraft in the
class Small by 9.1 minutes per flight, while delay of Large and Heavy aircraft
increases by 1.6 resp. 0.5 minutes per flight. From a system-wide perspective
this reduction in delays for smaller aircraft is less desirable; however, given that
Small aircraft constitute a small fraction of all traffic(13% of all flights) the

impact on the delay of Large and Heavy aircraft appears to be relatively low.
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Boston

5.4 Using Alternate Fairness Standards

So far, the models discussed in this chapter used the priority standard from
RBS (i.e. first-scheduled, first-served) to determine the fair slot shares for each
airline. The use of these models was therefore motivated by GDP dynamics
that prevented airlines from realizing these shares. This section, however, briefly
analyzes the impact of using alternative standards of fairness (and the fair shares
resulting from these standards), based on the approaches discussed in Chapter 4.
As stated before, the optimization models in this case could be used to prevent
the unacceptable high levels of variance that may result from using a probabilistic
allocation method.

This section considers two alternative standards of fairness, which use fair
share definitions based on the proportional random assignment mechanism and

on a more basic notion of airline proportionality. The proportional random as-
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signment mechanism was introduced as an alternative to RBS in Chapter 4;
whereas RBS is based on the notion of first-scheduled, first-served, the propor-
tional random assignment mechanism used the concept of “equal access to usable
slots” (that is, all flights that can use a slot have an equal entitlement to it).
This concept of fairness could be achieved with the allocation scheme shown in
Figure 4.6; consequently the expected share X, ; of slot j for airline a can be

calculated recursively as

By — Y0 Xak
a,j — 1 5
ZaEA Eavj - Z?ﬂ:(] Xa’k'

where FE, ; represents the cumulative demand from airline a up to period j (as

acA,j=0,....,n—1,

defined in Section 5.2). In other words, the proportional random assignment
mechanism will assign shares of slot 7 in proportion to each airline’s current
unsatisfied demand. The use of the proportional random assignment scheme as

the basis of fairness would yield the following definition of quota:
k
Qa,k:ZXa,j, kZO,...,n—l.
j=0

Given this definition of quota, we could in principle use any of the optimization
models proposed in this chapter.In this case, however, the definition of ideal
positions (and therefore the use of the greedy procedure) would introduce several
complications, since the rate of increase in the cumulative slot shares need not be
constant. As a result, the allocations obtained by a greedy procedure would not
necessarily yield the monotonicity property discussed before. For this reason, we
have used the total deviation model in our experimental results.

In addition, we also considered the more basic fairness standard in which each
flicht has an equal entitlement to all available slots in a GDP; in other words,

this standard does not take into account the scheduled arrival times of flights

108



and each airline is entitled to a share of the arrival slots that is proportional to

its flights. As such, it follows that the quota for this approach can be defined as

| Fal
| za’EA Fa,| ,

The idea that flights are equally entitled to all slots is in fact similar to the basic

Qo = (K +1) a€ A

assumptions underlying the Shapley value, as was discussed in Chapter 4. In
this case, we can again use the model based on ideal positions, which are defined

as

1
Paj = n(k — 5)/|Fa|, a€ A k=1,....|F,.

which equivalent to the definition of ideal positions in the PRV problem. Sub-
sequently, the allocation of slots with this standard of fairness can be achieved

using the greedy procedure.

5.4.1 Empirical Results

This section analyzes the impact of using the alternate fairness standards de-
scribed above. For both fairness standards, we compared the allocation that
would have been obtained using the resulting optimization models with the al-
locations obtained by RBS. The analysis was performed for the same of GDPs
at Boston’s Logan airport as before.

The impact of using proportional random assignment to determine fair shares
is shown in Figure 5.19. Figure 5.19 shows, for a selected number of airlines, both
the distribution of delays that was obtained under RBS and the distribution of
delays that would have been obtained using the optimization model with fair
shares derived from proportional random assignment. In each of the graphs, the

solid lines represent the distribution of delays under RBS, whereas the dashed
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Figure 5.19: RBS vs. Proportional Random Assignment Approximation

lines represent the distribution of delays that would have been obtained using the
optimization-based approach. The results in Figure 5.19 indicate that, on the
aggregate, both approaches yield similar results, which is perhaps not surprising
given the empirical comparison we performed in Chapter 4.

The impact of using the basic proportionality principle to determine fair
shares is shown in Figure 5.20. Again, we determined both the distribution of
delays that was obtained under RBS and the distribution of delays that would
have been obtained using the optimization model with proportional shares. The
graphs shown in Figure 5.20 show an interesting result, in that the use of propor-
tional shares increases the on-time performance of flights (that is, flights with a
delay of 15 minutes or less) in the resulting allocations. Overall, we found that
RBS yields allocations in which approximately 3.8% of flights arrive on-time,
while the optimization models would yield allocations in which on-time perfor-

mance is approximately 15.7%. This increase in on-time performance however
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Figure 5.20: RBS vs. Proportional Approximation

is offset by an increase in the flights that have delays of 2 hours or more. This is
illustrated in Figure 5.21, which compares the distributions of delays over all the
flights for the same set of GDPs. Observe that for all 15-minute intervals with
delays of 2 hours or more, the optimization model will have a higher number of
flights than RBS. It is interesting to note that the increase in on-time perfor-

mance appears to have come primarily at the expense of General Aviation (GA)
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Figure 5.21: RBS vs. Proportional Approximation: All Flights
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Figure 5.22: RBS vs. Proportional Approximation: General Aviation Flights

flights. This is illustrated in Figure 5.22, which compares the distributions of
delays under RBS and under the optimization-based approach over all the GA
flights for the same set of GDPs.

The discrepancy in the delay distributions for GA flights could potentially be
the result of strategic behavior (“gaming”) by GA operators. Since GA flights
do not have a scheduled arrival time, RBS uses the arrival times submitted
by GA operators to determine their priority. The changes in delay shown in
Figure 5.22, however, indicate that an unusually large number of GA flights
tend to arrive in the early stages of a GDP. This follows from the fact that
both the optimization model and RBS can be interpreted as priority schemes
(RBS is based on the scheduled arrival time, whereas the proportional shares
are based the ideal positions). Thus, the results in Figure 5.22 imply that the
relative priority of GA flights will generally be significantly lower under the
proportional scheme. However, it is easy to verify that if an airline has only 1
flight (i.e. a GA flight), its priority according to the proportional scheme should
fall somewhere in the middle (that is, approximately half the other priorities

would be lower and half the other priorities are higher). On the other hand,
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under RBS a flights priority would be in the middle if it was scheduled to arrive
in the middle of the GDP period. Consequently, a disproportionate number of
GA flights currently appears to arrive in the first half of GDP (based on planned

arrival times submitted by the GA operators).

5.5 Discussion

This Chapter introduced methods to approximate fair slot shares in situations
where the “ideal” allocation might not be attainable. Within the context of
GDPs, these methods were primarily motivated by the impact of program dy-
namics (i.e. flight cancellations/delays and flight exemptions). First, we ad-
dressed the impact of flight cancellations and delays, and proposed optimiza-
tion procedures based on closely related models used in apportionment and jit
scheduling problems. The resulting models yielded an intuitive greedy proce-
dure, which we showed is very similar to the Compression Algorithm that is cur-
rently used. Subsequently, we discussed how these methods could be extended
to manage flight exemptions. While the greedy procedure might no longer be
applicable in this case, empirical results clearly showed the potential to reduce
systematic biases inherent in the current procedures. Finally, we considered the
use of these optimization models to implement alternate standards of fairness.
Empirical results showed that using proportional shares (independent of the of
scheduled arrival times) could have a significant impact, which could potentially

be the consequence of strategic behavior from GA operators.
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Chapter 6

Slot Trading during Ground Delay

Programs

The previous chapters describe an approach to the allocation of slots during a
GDP that is based on priorities, and where a single allocation scheme is executed
periodically in response to dynamic changes that may occur. Under this inter-
pretation, the role of the airlines in the (re)allocation process is limited to the
provision of schedule updates (i.e. flight cancellations and delays). Consequently,
changes in airline preferences are only considered internally by flight substitu-
tions and/or cancellations (which, under this interpretation, may be viewed as
an internal reassignment of priorities to flights).

This chapter, in contrast, follows an approach in which airlines “own” a given
set of slots (as opposed to priorities), which is closer to the currently established
interpretation under CDM. We study the potential benefits of more active airline
involvement in the allocation process, by considering a system in which airlines
can actively pursue schedule improvements by proposing trades. Under this
approach, the FAA acts as a mediator coordinating the resulting exchange of

slots. The organization of this chapter is as follows. First, we give a brief
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Figure 6.1: Airline GDP behavior at O’Hare Airport, July 2000

motivation of our approach and discuss the relationship to current CDM efforts.
Subsequently, we discuss potential slot trading mechanisms, and analyze their

benefits under different models of airline decision-making.

6.1 Introduction

From an airline standpoint, the ability to substitute flight-slot assignments is
clearly the single most important aspect of a GDP. As discussed in Chapters 2
and 3, this allows an airline to mitigate the disruptions to its flight schedule,
and address the potential downstream effects of ground delays. A clear indica-
tion of their importance follows by considering Figure 6.1, which shows flight
substitution and cancellation patterns using empirical results from actual GDPs
at O’Hare airport during July 2000.

The leftmost graph in Figure 6.1 represents the cumulative number of flights
(as a percentage of the total number of flights that have been allocated a slot)
that are substituted during the course of a GDP day (note that percentages can

be greater than 100 since a single flight can be involved in multiple substitutions).
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Time 0 corresponds to the first time instance at which each flight was first
allocated a slot, and each curve corresponds to one GDP day. It should be noted
that flight substitutions due to the Compression Algorithm or GDP revisions
were not included; substitutions of cancelled flights were not included either.
Similarly, the rightmost graph in Figure 6.1 represents the cumulative percentage
of flights that have been cancelled during the course of a GDP. The graphs in
Figure 6.1 show first that airlines perform a large number of flight, substitutions,
and second that airlines perform flight substitutions throughout the course of
GDP.

Given the sheer volume of flight substitutions, it is not difficult to imag-
ine that potential benefits could be obtained by allowing the exchange of slots
between different airlines. That is, by coordinating their flight schedule adjust-
ments airlines might be able to achieve mutual benefits that they would not
be able to achieve by themselves. This, of course, is already inherent in the
Compression procedure: slots that an airline cannot use (i.e. due to flight can-
cellations) are exchanged in such a way that all parties involved will receive
a reduction in their flight delays. Using the Compression procedure and its re-
ported benefits as a starting point, one could also envision more general exchange
mechanisms. In fact, a basic form of such a slot exchange functionality, known
as “Slot Credit Substitutions”, is currently under consideration in the CDM
working group ([30]). Under this proposal, airlines would be able submit what
amounts to conditional cancellations: airlines would be able to submit requests
of the form “I am willing to cancel flight f; (and release its currently assigned
slot s1) if T can move flight f» up into (a later) slot s1,”. The FAA would monitor

such requests on a continuous basis, and if possible implement the exchange(s)
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of slots required to satisfy the request.

The introduction of slot trading during the course of a GDP introduces a wide
range of possibilities, in that a number of schemes could potentially be used to
coordinate the exchange of slots. One approach, for instance, could be a market-
based mechanism in which airlines would be able to buy and sell slots. Another
approach could be a system where airline would bargain amongst themselves
(see [2] for an classification of potential approaches). As discussed in Chapter 3,
however, it is difficult to envision the use of such highly decentralized mechanisms
within the context of GDPs. Among others, the high level of uncertainty, the very
dynamic environment, and the potential impact on other ATFM initiatives all
present significant barriers'. In this chapter, we therefore consider more modest
generalizations of the slot-credit substitution framework. Under this framework,
airlines may submit offers to exchange slots (which could be more general than
those allowed under the slot-credit substitution proposal). The FAA, on the
other hand, would act as a mediator who evaluates and selects possible trades.
To illustrate this general concept, we first discuss how the Compression procedure
might be interpreted as a form of mediated bartering. Subsequently, we give a

general model representation of the resulting framework.

6.1.1 Compression as Mediated Bartering

In Chapter 5 we discussed how the Compression procedure may be viewed as a
form of (re)rationing, instigated by flight cancellations and delays. An alternate

interpretation, however, is to view the inter-airline exchange of slots as a form

In addition, it is significant to note that antitrust regulations prohibit direct negotiations

between airlines.
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of bartering, in which the FAA acts as a broker matching offers proposed by the
airlines. To illustrate this interpretation, we first observe that all slot exchanges
are instigated by a slot that is made available through a cancelled or a delayed
flight. Such a slot leads to a series of slot exchanges, in which flights are re-
peatedly moved up in a way that maximizes the return for the releasing airline.
To formalize the bartering interpretation we define an exchange process that is
driven by a set of offers made by each airline. There are two generic types of
offers, which are depicted in Figures 6.2 and 6.3.

The default offers depicted in Figure 6.2 simply state that an airline would
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be willing to offer a slot currently occupied by one of its flights in return for an
earlier slot, as long as the new slot is not earlier than the earliest time of arrival
for the flight. The offers shown in Figure 6.3, on the other hand, apply when
a flight is cancelled or delayed. Here, the releasing airline is willing to give up
the slot in return for a reduction in the delay of a subsequent designated flight.
A single cancellation can lead to multiple offers of this type to effect a set of
progressive moves for a single airline’s flights.

Given the resulting set of offers, the FAA (in its role as mediator) has to
determine which offers to select and execute. In the case of Compression, all
exchanges are one-for-one (i.e., a single slot owned by one airline is exchanged
for a single slot owned by another airline). As a result, the problem of finding
a feasible set of exchange sequences is equivalent to a finding a set of non-
intersecting trade cycles, which correspond to the solutions of an assignment
problem (see [81] for a detailed discussion). Several criteria could be used to
select the actual trades that are executed: one possibility is to use a bilevel
programming approach in which offers to move down are given priority (see [81]).

This approach yields solutions that are similar to the Compression Algorithm.

6.1.2 Model Description

Under the interpretation of Compression as slot trading, only one-for-one trades
are allowed. Here, we describe a more general slot trading model. As in the
previous chapters, we let F = {fo,..., fn_1} represent the flights in the GDP,
and S = {so,...,S,—1} the slots available during the GDP. The airlines are
represented by a set A, and for each airline a € A, F, C F represents the

flights operated by airline a. At the start of a period of trading, all flights
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Figure 6.4: Airline preferences

have been assigned a slot; we assume that flight f; is assigned to slot s; for all
1 €0,...,n— 1. This assignment specifies each airline’s allotment of slots, that
is, S, = {s; € S: fi € Fa} represents the set of slots owned by airline a.

Given these initial allotments, we can associate with each airline a a set of
offers 7, C 2% x 2575 That is, each offer ¢, = (O, Rat) € T, specifies that
airline a would be willing to offer slots in O,; in return for the slots in R, ;.
Airline preferences over these offers are implied by a value w,; for each offer
t, €71,.

In the remainder of this chapter, we assume that an airline’s preferences can
be expressed by an assignment model as shown in Figure 6.4. Here, p(B) € R
with p(B); =1if j € B and 0 otherwise. Thus, an airline’s value for the bundle
of slots S is obtained by solving as assignment model, where wys represents the
value of assigning flight f to slot s, and cy represents the cost of cancelling flight
f. As such, an airline’s value w,; for an offer ¢, = (O, , R, ) can be defined as

Wqt = ua(p(Sa - Oa,t + Ra,t)) - Ua(Sa)-
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6.2 Background

The implementation of this general framework poses a number of issues. First,
we have to specify which offers to allow and (potentially) how airlines may sub-
mit their preferences over different offers. Given this information, the framework
requires a criterion or mechanism for determining which offers to accept, which
may involve a number of criteria. One common criterion could be the (pareto)
efficiency of the resulting allocation. Another desirable aspect could be the sta-
bility of the resulting allocation, which may involve equity considerations. An
additional concern is introduced by the incentives the mechanism may generate,
that is, the airlines may strategically misrepresent their preferences. In this sec-
tion, we outline two potential allocation criteria, and illustrate their limitations

within the context of slot trading during GDPs.

Cooperative Games without Side Payments

Let us assume, for now, that the mediator has complete knowledge of each
airline’s preferences. Thus, our only concern is the criterion for determining
trades. One possibility is to represent the model as a cooperative game without

side payments. A cooperative game without side payments can be defined as

follows (see [58]).

Definition 6.2.1. A Cooperative Game without Side Payments is defined as a
tuple (N, X, V., (=:)ien), where N represents the set of players, X represents the
set of possible outcomes, V : 2N — 2% is a function that associates with each
coalition G a set of outcomes V (G), and >=; is a preference relation over X for

allt € N. 0

The core of a cooperative game without side payments is defined as follows.
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Definition 6.2.2. The core of the cooperative game (N, X, V, (=;)ien) is the set
of allx € V(N) for which there is no coalition G andy € V(G) such thaty =; x

foralli € @G. O

It is relatively straightforward to represent the slot trading model as a co-
operative game without side payments in which the players correspond to the
airlines. X can be defined as the set of all possible allocations of slots to airlines.
For any coalition G, we can define V(G) as the subset of those allocations in
which the airlines in G have been assigned slots in | J,.; Sa- Thus, V(G) rep-
resent the allocations that can be achieved if the airlines in G trade amongst
themselves. Finally, the preference relationships >, are defined by the utility
functions u,. Intuitively, therefore, the core represents the set of allocations such
that no group of airlines could each improve by trading amongst themselves.

In the special case that each airline owns exactly one flight, the resulting
cooperative game corresponds to the well-known “housing” market proposed
by Shapley and Scarf ([52], [67]). It is well-known that in this case the core
is non-empty, and that under certain restrictions on the preference relations
the core consists of a single allocation. Moreover, an intuitive procedure (the so-
called “top-trading cycles” algorithm) can be used to determine core allocations.
Unfortunately, however, these nice results do not extend to the more general
case in which airlines may have more than one flight. In this case the core
may be empty; that is, no stable allocations may exist. This is illustrated in
the counterexample shown in Figure 6.5, which is a slight adaptation from the
example given by Konishi et al. ([37]). Figure 6.5 contains a simple GDP
instance, in which there are six flights and slots owned by four airlines. Among

all the possible allocations of slots to the airlines, there are only four that are
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Figure 6.5: Counterexample Data

individually rational (that is, allocations in which no airline is worse off than it

was in the initial allocation):
o X Xl,a = {81, 82},X1,b = {83},X1,c = {84},X1,d = {85, 86}>
o Xy: X2,a = {81, 52}7X2,b = {84}7X2,c = {53}7X2,d = {85, 36}7
o X3: X3, =1{51,5}, X3y = {83}, X5 = {56}, X34 = {54, 85},
o Xy: X4,a = {83, 36};X4,b = {85}>X4,c = {34};X4,d = {81, 82}-

However, allocation X7 is blocked by allocation X5 through {b, ¢} (that is, airlines
b and ¢ would be better off by trading amongst themselves). Similarly, allocation
X, is blocked by allocation X3 through {c,d}. Allocation X3 is blocked by
allocation Sy through {a,b,d}. Finally, allocation X, is blocked by allocation
X, through {b, c}. Consequently, the core of the corresponding cooperative game

without side payments must be empty.
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Randomized Slot Trading

Since the core may be empty, we cannot expect to use it as a criterion for trad-
ing slots. As such, we cannot expect to apply a procedure like the top-trading
cycle algorithm to implement our slot trading framework. A potential remedy to
this problem would be to allow, as was done in Chapter 4, slots to be divisible.
This would induce a form of randomized trading, similar to the procedure pro-
posed by Hylland and Zeckhauser ([31]) for the allocation of students to dorms.
To formalize this idea, we represent the slot trading framework as an exchange

economy. An exchange economy can be defined as follows.

Definition 6.2.3. An Exchange Economy is defined as a tuple (N, n, (w;)ien, (=
)ien), where N represents the set of players, n represents the number of com-
modities, w; represents the initial endowment of player i, and >=; is a preference

relation over the bundles in R, for alli € N. O

Again, it is relatively straightforward to represent the slot trading model as
an exchange economy: the players corresponds to the airlines, the commodities to
the slots, the initial endowments to the slots owned by each airline (i.e. w,; =1
if j € S, and 0 otherwise), and airline preferences are represented by the utility
function u,. Feasible allocations to the resulting model are given by the set

X ={zeR}M": Zxa,j = Zwa,j},

acA acA

which generalizes the previous model in that fractional allocations of slots to
airlines are allowed. A fractional assignment x can be interpreted as a “lottery”
over integral allocations, which follows by representing x as a convex combination
of the extreme points of X. It is important to note, however, that this approach

requires the assumption that airlines have so-called von Neumann-Morgenstern
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utility functions. In other words, an airline’s utility for a fractional assignment
equals its expected utility in the lottery over integral allocations (and airlines
compare lotteries by comparing their expected utilities).

An important concept in exchange economies is the notion of a competitive

equilibrium, which is defined as follows.

Definition 6.2.4. A Competitive Equilibrium is an allocation-price pair (z,p)

where x € X, p € R} and for alla € A, y € RY,

n—1 n—1
ua(y) > u.(z) = ijyj > ijwa,j.
=0 =0
[

It is well-known (see [59]) that if (z,p) is a competitive equilibrium, the
allocation x will be in the core of the corresponding cooperative game without
side payments (in which fractional assignments are allowed). Moreover, it can be
shown that if the utility functions u, are continuous, concave and monotone non-
decreasing in each variable, a competitive equilibrium exists (see [59]). Thus,
since the utility functions shown in Figure 6.4 are piecewise linear and concave
(see [53], p.42), the core will be non-empty under this representation of the slot
trading model?.

As such, the interpretation as an exchange economy presents a possible ap-
proach to the design of slot trading mechanism: given each airline’s preferences,
the mediator could determine a competitive equilibrium, resolve the resulting
lottery (such a procedure is discussed in [31]), and implement the final alloca-

tion. Of course, a critical issue still to be resolved would be a scheme that would

2Tt should be noted that this result is only valid if the airlines value for an assignment can

be expressed through an assignment model as in Figure 6.4.
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induce airlines to reveal their preferences. Aside even from this issue, however,
it is unlikely that such a form of randomized trading would yield a satisfactory
approach. In particular, the critical assumption that airlines have von Neumann-
Morgenstern utility functions is unlikely to hold within the context of GDPs. For
example, it is difficult to envision that an airline would cancel or even delay one

of its flights in return for a probability that another flight’s delay is reduced.

6.3 Approach

In light of the results discussed in the previous section, the remainder of this
chapter sets out a somewhat different approach. Instead of using the core or
competitive equilibria as the allocation criterion, we consider a system in which
the mediator simply aims to maximize the number of possible trades, or optimizes
some objective function that embodies certain system-wide performance goals.

The resulting slot trading framework can be summarized as follows:

e Periodically (say every 15 or 30 minutes), airlines submit a list of trade

offers they would desire.

e Subsequently, the mediator (FAA) will either maximize the number of
trades that can be executed, or sequentially execute as many feasible trades

as possible.

Note that the airline-provided information does not include any information
about its relative value for these trades. We assume, implicitly, that each offer
specifies how each flight would be assigned to the slots traded for; this would be
necessary to maintain a feasible allocation of slots to flights. In addition to the

offers, 7,, proactively provided by the airlines, we also assume the availability
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Figure 6.6: IP formulation for Mediation Problem

of default offers, which specify that an airline would always be willing to reduce

the delay of any of its flights, i.e.
D={(s;,s;):0<ji<n—1e <j<i}

Given these offers, the mediator’s task is to find the maximum number of de-
sirable offers that are compatible. This problem can be formulated as a set-
partitioning problem, as shown in Figure 6.6. In this formulation, the variables
Yo are associated with the trade offers ¢, € 7,, that is, y,+ = 1 if and only if
offer ¢, is selected. The variables z; ; correspond to the default offers (s;, s;) € D,
and x; ; = 1 if and only if slot s; is exchanged for slot s; (or equivalently, flight
fi is assigned to slot s;). The first constraint states that each slot is assigned
to an offer (default or airline provided) that proposes to give up the slot. The
second constraint states that each slot is assigned to an offer that requires the
slot in return (note that the situation where slot s; is not traded corresponds to

selecting the default offer (s;,s;)).

Offer Structure

In principle, the set-partitioning formulation can be used to accommodate
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any offer an airline might find desirable. Here, however, we consider a more
restricted approach, in which airlines are allowed to propose only “two-for-two”
trade offers (i.e., an offer consists of an exchange of two slots for two other slots).
The motivation for introducing this restriction is the reduction in complexity of
the resulting framework. This reduction in complexity not only applies to the
mediator’s problem, but also to the evaluation and generation of potential offers
by each individual airline. While this may be a complex problem in general, it
is relatively straightforward to evaluate these pairwise offers.

Even though these restrictions limit the potential exchanges during the course
of a GDP, the oftentimes specific nature of airline objectives indicates that two-
for-two trades may still be of substantial use. Before discussing this further,
however, it is worthwhile to first look at the structure of two-for-two trades.
Any two-for-two trade offer involves two flights, whose assigned slots are offered
for two other slots. As such, these offers can be separated into three classes: (1)
the offer expresses a trade for two earlier slots (i.e. both flights are moved up),
(2) the offer expresses a trade for two later slots (e.g. both flights are moved
down), or (3) the offer expresses a trade for one earlier slot and one later slot (e.g.
one flight is moved up while the other is moved down). It is safe to dismiss the
first two classes: the first class is subsumed by the default offers while it is hard
to imagine why an airline would submit an offer in the second class. As such,
we can safely interpret (a class of) two-for-two trades as an “at-least, at-most”
offer which indicates that an airline demands a certain minimum delay reduction
on one flight in return for a maximum amount of additional delay imposed on
another flight.

Thus, two-for-two trades could allow airlines to make local adjustments to
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their flight schedule by trading off the marginal delay costs between pairs of
flights. For instance, an airline could offer to delay a flight with few passengers
in return for delay reduction on a more heavily loaded flight that would allow
its passengers to make their connections. More generally, a flight’s delay costs
are oftentimes reasonably approximated by a staircase structure as shown in
Figure 6.7 ([18],[26]). This structure is motivated by operationally significant
delay levels within each carrier. For instance, the industry standard for an on-
time arrival is 0 to 15 minutes delay beyond scheduled arrival time. Thus, the
difference between 4 and 9 minutes of delay is not nearly as significant as the
difference between 14 and 19 minutes of delay. Similarly, between 15 and 25
minutes, the rate of missed baggage connections begins to increase, and between
25 and 45 minutes of delay, passengers begin to miss connections. With delays
over 45 minutes, crews begin to miss connections. Of course, the exact times
and significance of these classes may differ on a flight to flight basis. Yet these
examples illustrate that, in general, there may be substantial differences in the
marginal delay costs for different flights, which motivates the potential use of

pairwise trade-offs.

Model Formulation

While the formulation as a set-partitioning problem could also be used to find
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compatible trades in the case of “at-least,at-most” offers, the large number of
variables would likely make this approach intractable for all but the smallest
cases. When only two-for-two trades are allowed, however, the resulting set of
offers can be defined more succinctly.

Specifically, each trade t € 7 can be characterized by a tuple (d', mt, ut, '),
which states that the airline is willing to move down flight f; to a slot no later
than m! in return for moving up flight f,: to a slot that is no later than [*. In
the remainder of this section we therefore discuss an alternate formulation of the
mediation problem, which takes into account the underlying offer structure.

This formulation may be viewed as a network flow problem with side con-
straints. The general idea is that each flight is assigned to a class, which rep-
resents the amount of delay or delay reduction that each flight receives (i.e. at
least d units reduction in delay, at most d units additional delay). The side con-
straints are needed to ensure that only assignments corresponding to proposed
offers are selected. To illustrate this idea, we first consider a single flight f; and
examine all the offers it occurs in. These offers determine a sequence of classes
ei(0) < e;(1) < --- < ei(k;), where €;(0) = oag; (that is, the earliest time of

arrival for flight f;). Thus, if ¢;(k) < i there is an offer which contains a demand
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Figure 6.9: TP formulation for Restricted Mediation Problem

of at least e;(k) for slot 4. Similarly, if e;(k) > i there is an offer to move down f;
to at most position e;(k). In addition, we assume that thereisone k£ : 0 < k < k;
such that e;(k) = i. Intuitively, each of the elements in this sequence represent
classes that flight f; can be assigned to, as shown in Figure 6.8. Figure 6.8
also shows that once a flight is assigned to a class, it will subsequently be as-
signed a slot according to the bounds implied by the class. To represent the
IP formulation, we define Dr = ;1 , ner (&, k)Y, Ur = U g uper{(u:0)}, and
Nr = U,;esi(%,4)}. Thus, D7 contains the classes that correspond to downward
moves, Uz contains the classes that correspond to upward moves, while N7 con-
tains the classes corresponding to default offers. The resulting IP formulation
is shown in Figure 6.9. The variables in this formulation can be interpreted as

follows.

e The variables z;;, represent the assignment of a flight to a class, that is,
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x;p = Liff f; is assigned at least slot e;(k) for i € F,1 < k < k;.

e The variables Z;  ,; represent the execution of an offer, that is, z; . =1

if offer (i, k,u, 1) is executed for (i, k,u,l) € 7.

e The variables y; s represent the actual assignment of a flight to a slot, i.e.

vis = L iff f; is assigned to slot s fori € F,s € S.

e The variables z;; are used to complete the assignment of flights to classes,
ie. z;p = 1iff f; has been assigned to a class lower than & but receives at

least slot e;(k).

The first constraint in the IP formulation represents the assignment of flights to
classes. The second and third constraints represent the subsequent assignment of
classes to slots, and the fourth constraint represents the restriction that each slot
is assigned exactly once. The fourth constraint ensures that the resulting trades
only include offers proposed by the airlines. Specifically, the constraint states
that a flight is moved down only if another flight is moved up, in accordance
with one of the proposed trades. The final constraint states that at most one

flight will be moved down for any flight that is moved up.

6.4 Case Studies

The remainder of this chapter further pursues the approach to slot trading out-
lined in the previous section, using two case studies. The case studies we consider
rely on two different models of airline decision-making: the first model assumes
that the airlines’ objective is to maximize on-time performance, while in the

second model the airline objective is to minimize passenger delays. While these
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basic models cannot accurately represent the full complexity of the decisions and
trade-offs airlines are faced with during the course of a GDP, we believe these
models do incorporate important factors in the airlines’” decision-making process
(see [41], [40], [54]). The objective of these case studies is threefold: (1) to an-
alyze potential benefits of increased coordination, (2) to analyze the efficiency
of the underlying optimization models, and (3) to consider the impact of airline

behavior in the trading process.

6.4.1 On-Time Performance

In the first case we consider, we assume that each airline’s objective is to maxi-
mize on-time performance. A flight is said to be on-time if it arrives within 15
minutes of its scheduled arrival time; thus, an airline’s objective is to maximize
the number of flights that are delayed at most 15 minutes. While this may be
the simplest model of airline decision-making imaginable, the importance of on-
time performance should not be underestimated. The primary reason for this is
that the FAA tracks and publishes the aggregate on-time performance for each
airline; the publication of these statistics is said to have a significant impact on
consumer preference (cf. [41]).

Restricting the airline objectives to maximizing on-time performance offers a
substantial simplification of the trading model. To illustrate this, we first observe
that in this case we can represent the airline’s performance function using the

IP formulation shown in Figure 6.4 with coefficients

M if (t, —ej) < 15,

Wrs =
0  otherwise.
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Figure 6.10: TP formulation for Mediation Problem with On-time Performance

Objective

with M >> 0 (aslightly different approach will be discussed later in this section).
This indicates an application of the trading model introduced in the previous
section, in which an airline would submit any offer that would improve on-time
performance. Such an offer would state that an airline is willing to move down
any flight (that is not already arriving on-time in the current allocation) in return
for a delay reduction that makes another flight arrive on time. Note that such an
offer would never involve a flight that is already arriving on time in the current
allocation. In this case, we can distinguish three possible “at-least,at-most”
classes for each flight: (1) a flight will be assigned at least a slot corresponding
to an on-time arrival, (2) a flight will be assigned at least the slot it currently
occupies (e.g. a default offer), and (3) a flight will be assigned at most the last

slot in the GDP (e.g. the flight is delayed). In this case, the general formulation
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of the mediation problem discussed before can be simplified to the formulation
shown in Figure 6.10.

In this formulation, the three sets U;, N; and D; correspond to the three
different classes for each flight f;. As indicated before, the definition of these
sets depends on flight f;’s current delay. If flight f; is currently arriving on
time only the default offer applies, and therefore we have U; = D; = () and
D¢ = {e;,i}. Otherwise, the flight can either moved up or down and we have
U={jeS:tj—e <15} Ny={jeS:j<i}/U;and D, ={j € S:j > i}.

v ,.D ,.N

As before, the variables z;/,z;”, x;' represent the assignment of a flight to a

class, the variables y; ; represent the assignment of a flight to a slot, and the
N

variables 2V | 2!

7z, complete the assignment of flights to classes. The constraints in

Figure 6.10 are analogous to the constraints in the general formulation with the
exception of the final constraint, which ensures that for each airline only offers
which improve on-time performance are executed. The fact that an airline is
willing to arbitrarily trade off additional delays for an improvement in on-time
performance allows us to represent the acceptable offers with a single constraint
for each airline. Finally, we note that a number of different objective functions
are possible, since any solution for which ) feF N < n results in the execution
of at least one desired trade. Thus, some possibilities would be to maximize the
number of flights that have been moved on time (e.g. Maximize ) - 2Y), to
maximize the number of flights that have been delayed (Maximize Y7, oz z7),

or to minimize the number of default offers executed (Minimize ). - 2¥). The

impact of these different possiblities is discussed later in this section.
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Initial Empirical Results

As a first step in our analysis, we considered the potential benefits that could
be obtained by trading slots among airlines. For our analysis, we used historical
data from a set of GDPs at Boston’s Logan airport between January and April
of 2001 (the same data was also used in Chapter 5). For each of these GDPs, we
first executed RBS and fixed the assignment of all the flights that were exempted
from the program. The resulting flight-slot assignment of the remaining (non-
exempt) flights was used to determine each airline’s initial allotment of slots.
Subsequently, we maximized on-time performance for each individual airline us-
ing the assignment problem formulation shown in Figure 6.4. In practice, this
allocation would result using the substitution process currently in place. The
total number of flights arriving on time after this stage represents the optimum
that could be obtained without coordination. In addition, we also maximized
the overall on-time performance (using a single assignment problem formulation
without considering slot ownership). This provides a bound on the benefits that
could be obtained with coordination.

To analyze the potential benefits of our 2-for-2 slot trading mechanism, we
applied the mediation problem to the allocation that would have been obtained
after each airline individually maximized its on-time performance. The objec-
tive function we used was to maximize the number of flights that were moved
up. We compared these benefits with the improvement in on-time performance
that could be achieved with the Compression Algorithm. To obtain an estimate
of the Compression benefits, we assumed that airlines would cancel all flights
with excessive delays (i.e. delays of 2 hours or more). After cancelling these

flights, we applied the Compression Algorithm. The results are shown in Fig-
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Figure 6.11: On-time Performance Improvements from Slot Trading

ure 6.11, which shows the improvements in on-time performance relative to the
optimum that could be obtained without coordination (as a percentage of the
total number of non-exempted flights in the GDP). Here, the solid line represents
the upper bound on the increase that could be obtained by coordination. The
dashed line represents the relative improvements that would be obtained by 2-for-
2 slot trading, while the dotted line represents the improvements obtained by the
Compression Algorithm. On average, the potential increase in on-time perfor-
mance would be 26.8% (the average number of flights in a GDP was 216.1, while
the average number of flights arriving on-time without coordination was 100.1).
The average relative improvement obtained by slot trading was 24.9%, while
the average improvement with the Compression Algorithm was 3.9%. These
results clearly indicate that slot trading could yield substantial benefits: while
the Compression Algorithm would only lead to modest improvements in on-time

performance, the use of slot trading nearly always yielded improvements close

to the theoretical maximum.
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Figure 6.12: Impact of Objective Function Choice
Alternate Objectives and Formulations

We now turn to the performance and efficiency of the slot trading model itself,
and consider the impact of using alternate objectives and formulations in the
mediation problem. To illustrate theses issues, we first compared the improve-
ments in on time performance that would be obtained with different objective
functions. Figure 6.12 shows the relative improvements in on-time performance
under two objective functions, maximizing the number of flights moved up and
maximizing the number of flights moved down. The solid line again represents
the theoretical maximum, the dashed line represents the relative improvements
when the number of flights moved up is maximized, while the dotted line repre-
sents the improvements when the number of flights moved down is maximized.
Both objectives yields substantial improvements, though the use of the first ob-
jective leads to slightly better results. In addition to the differences in on-time
performance, the objective function choice can also lead to substantial differences

in the efficiency of the resulting IP formulations. If we maximized the number
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of flights moved up, for instance, the average solution time equals 8.3 seconds®.
However, if we maximized the number of flights moved down the average solution
time was 163 seconds*. Given the the impact of objective function choice on the
solution times, we also considered the use of alternate IP formulations for the
mediation problem. We analyzed two alternatives to the IP formulation shown
in Figure 6.10: the first formulation aims to improve efficiency by strengthening
the formulation, while the second aims to reduce the size of the resulting IP
formulations.

To strengthen the formulation, we can reformulate the constraints that ex-

press the assignment of flights to classes for each airline a € A, i.e.

oV 4+ + 2P =1 forall f; € F,, and (6.1)
Z rP < Z 7y, (6.2)
fi€Fa Ji€Fa

The key to reformulating these constraints is the observation that feasible solu-
tions to these constraints can be represented as shortest paths in appropriately
defined graphs (akin to the formulation of knapsack problems as dynamic pro-
gramming problems). To illustrate this, we define for each airline a € A with
Fo = {1, f5}, the set of nodes V, = {(4,7) : 1 < i < ny, —[%] < j <
|%]}. Intuitively, each node represents a state; that is node (i, j) would in-

dicate that after assigning flights f{, ..., f®, the difference between the flights

moved up and the flights moved down equals j. Observe that the maximum

Na

5|, since there has to be a flight moved up for every flight

difference equals |

moved down. Given this set of nodes, the assignment of flights to classes could be

3the IP formulations were solved using Cplex 7.1, using a Sun Ultra 10 work station.

4We limited the maximum number of nodes visited in the branch and bound tree to 1000.

139



represented by a set arcs B, = EYUENUEP | with BV = {((4,7), (i+ 1,5+ 1)) :
(4,4), 0+ 1,7+ 1) € Vo}, By = {((4,5), (i + 1,5)) = (,4), (i + 1) € Vu},
and EP = {((4,7), i + 1,5 — 1)) : (i,5),(i + 1,5 — 1) € V,}. Intuitively, each
arc corresponds to the assignment of a flight to a class; for instance the arc
((4,4), (i4+1,7+1)) € EY would correspond to moving flight f up, e.g. zf = 1.
As such, any path from node (1, 0) to a node (n,, ) with j > 0 would correspond
to a solution that satisfies constraints 6.1 and 6.2.

The resulting formulation can be obtained by introducing the following vari-
ables (corresponding to the arcs in E,).

. ig] €{0,1},a € A, (a;,7) € Vy;

o 2} €{0,1}, a € A, (a;,]) € Va;

o 30 . {01}, a € A, (a;,)) € V.

Using these variables, the flow balance constraints can be represented as

:%f{l,o + 559170 + iaDl,o =1 forallae A, (6.3)
&l +E) 4l o=l 4 dn 4l forallac A (i,§) € Vo, i > 1,
(6.4)
S 3@ 43w =1 forallac A (6.5)
j=—1 7>0 j>1

Replacing constraints 6.1 and 6.2 by constraints 6.3, 6.4, and 6.5 in the original

formulation, and substituting

U __ ~U N _ ~U D ~U
La; = Z Lasgr  Lag = Z Lazjr Loy = :: Laz,j

((li 7j)€va (a'i 7])€Va (a'i ,j)eVa

would yield an alternative formulation.
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A different reformulation of the original IP is motivated by the fact that
the sometimes large size of the formulations is primarily due to the number of
assignment variables y; ;. To reduce the size of the resulting formulations, we
therefore consider an approach which projects out these assignment variables.
The idea behind this approach is that each class can be viewed as a potential
“job” to be scheduled in the interval 1,...,n; each job has both a release time
and a deadline. For instance 2 = 1 would imply that we have to schedule a
job with release time e; and deadline 7. With this information, we could replace
the requirement that each flight is assigned a slot in its assigned class with the
requirement that each potential set of classes (“jobs”) can be scheduled.

This less stringent requirement can be formalized by stating that for each
interval j, ..., k, the number of jobs that both arrive and are due in that interval
should be no more than the number of slots in that interval. Formally, this can
be expressed as follows.

ool Y 2N+ > P <k—j+1, (6.6)

fieF:U;CI fi€F:N;CI fi€F:N;CI

for all I = {j,...,k}, 1 < j <k < n. The validity of this reformulation
is easily shown by induction on the number of slots. Consequently, the second
formulation can be obtained by eliminating the assignment variables (and all the
constraints they appear in) in the original formulation, and adding constraint 6.6.
We note that feasible solutions to the resulting formulation do not represent
an assignment of flights to slots; rather the constraints ensure that a feasible
assignment of flights to slots exists. To obtain an assignment of flights to slots,
we use a separate assignment problem.

We evaluated the performance of the resulting formulations, using the two

objective functions described above. The results are shown in Appendix B. In
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Appendix B, formulation 1 represents the standard formulation of the mediation
problem shown in Figure 6.10. Formulation 2 represents the formulation that is
obtained by using constraints 6.3, 6.4, and 6.4, while formulation 3 represents the
formulation that would result from the elimination of the assignment variables.
The results shown in Appendix B clearly show the impact of using alternate
formulation. Formulation 2 is stronger as indicated by the reduced value of the
LP relaxation value (in particular if the objective function used is to maximize
the number of flights moved down). However, the increased size of the IPs
can lead to an increase in solution time. The results for formulation 3 clearly
show the reduction in the size of the formulations. While the elimination of
assignment variables does not strengthen the formulation, the reduced size may
lead to significantly lower computation times. To conclude, we note that both
reformulations are complementary, that is, they can be applied simultaneously.

We have not pursued this possibility.

Slot Trading Dynamics

So far, the slot trading problem we considered assumed that an airline would
agree to any amount of additional delay for a flight in return for a reduction
in delay that would make another flight arrive on time. In other words, an
airline would submit all “at-least, at-most” offers that would improve its on-
time performance. As a final step in our analysis, we now consider the benefits
that may be obtained if airlines only submit smaller sets of offers.

To analyze this situation, we consider cases in which an airlines may no
longer accept an arbitrary increase in delay in return for an increase in on-time

performance. The approach we follow is based on the use of a slightly more
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complex value wy, of assigning flight f to slot s (in the formulation shown in

Figure 6.4). More specifically, we define the coeflicients wy, as

M if (t, — e;) < 15,

Wys =
max (120 — t,,0) otherwise.

As before, a large value is associated with on-time performance. However, in

this case additional delays to a flight that is not arriving on time will incur

a cost (reduction in value). We assume that the value decreases linearly in the

additional delay; there is no additional decrease in value for flights with excessive
delays (i.e. 2 hours or more).

Given this value function for each flight, the number of offers submitted by

an airline can be limited by the specification of aspiration levels v,(a € A).

Intuitively, an aspiration level v, signifies that an airline will only agree to delay

a flight (in return for an increase in on-time performance) if the increase in cost

is no more than the aspiration level v,. As such, the aspiration levels define the

classes D; in the formulation shown in Figure 6.10, that is,
Di(va) = {j ESIj >z/\wn—w” Sva} for allaGA, fz Gfa.

The use of aspiration levels provides a simple yet intuitive way to analyze the
impact of limiting the number of offers proposed; by varying the aspiration levels,
the number of proposed offers can be adjusted.

Figure 6.13 shows the relative improvements in on-time performance as a
function of the aspiration level, for the same set of GDPs in Boston that was
used before. Each curve in Figure 6.13 corresponds to a single GDP. These results
show that even for smaller aspiration levels (e.g. 0 to 30 minutes), considerable

improvements in on-time performance can be obtained. It is interesting to note
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Figure 6.13: On-time Performance Improvements by Aspiration Levels

that even with aspiration levels of 0 (in this case, an airline will only allow flights
with excessive delays to be moved down), the improvements can be substantially
higher than those obtained by the Compression Algorithm. Overall, these results

indicate that slot trading may be beneficial even if with limited numbers of offers.

6.4.2 Passenger Delay Costs

The second case study considers the situation in which each airline’s objective is
to minimize (total or average) passenger delays. Total passenger delay is defined
as the total number of passengers in a flight multiplied by the delay of that
flight summed over all flights. As such, the trade-offs that occur in this case
will typically consider the overall benefits of delaying flights with few passengers
in return for delay reductions for more heavily loaded flights. As in the case of
on-time performance objectives, minimizing passenger delays plays an important
role in the airlines’ decision-making process during GDPs ([41], [79], [54]).

The use of passenger delay minimization as airline objectives again allows us
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to represent the airline’s performance function as an assignment problem. Using
the IP formulation shown in Figure 6.4, passenger delays can be represented by
using coefficients

wys = —p(f)(ts — ey).
where p( f) represents the number of passengers on flight f (note the coefficient is
negative so as to represents costs). Another, somewhat more course grained ap-
proach, could be to define for each flight a set of critical times ki(f), ..., kmaz(f)

and use coefficients

0 if (ts —ey) < ka(f),

Wrs =
—ki(fp(f) HE(f) < (ts—ef) < kipa(f), 1 <i < maz.

The use of critical times leads to the staircase cost structure shown in Figure 6.7.

This applies in situations where the exact slot assignment is less important than

the specific interval in which the flight is assigned (see also [41], where critical

arrival times are based on the impact on downstream delays).

Whereas the on-time performance objective allowed us to represent the of-
fers proposed using a single constraint, the increased number of possible trade-
offs (i.e. flight classes) that may occur in the minimization of passenger delay
costs make this approach less applicable. To analyze the benefits that could
be achieved by slot trading, we therefore used the slot trading model shown
in Figure 6.9. If airlines use passenger delay minimization as their objectives,
the potential number of offers could substantial: in principle, an airline might
submit any “at least, at most” offer that would reduce its passenger delay cost.
That is, for any two flights f;, f; € F, and any two slots d,u such that i < d,

u < 7 and

Wed — Wi < Wy, 5 — Wy,
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the offer (i, d, j,u) might be considered desirable. However, many of these offers
may be considered redundant. Suppose, for instance, that an airline submits
two offers (i,d;, j,u) and (i,ds, j,u) with d; < dy. That is, an airline would
be willing accept at most slot d; or at most slot dy for flight f;, in return
for giving flight f; at least slot w. Clearly, the first offer, (i,d;,j,u), will be
redundant. A similar situation occurs with two offers (i, d, j,u,) and (i,d, j, us)
with u; < ug. That is, an airline would be willing accept at most slot d for flight
f1, in return for giving flight f; at least slot u; or at least slot us. Thus, any
of these redundant trades can be removed from consideration. In addition, we
note that the use of critical arrival times further allows us to reduce the number
of potential offers. Specifically, we can define the classes in the IP formulation
to correspond to the latest slot with a given value in the staircase cost structure
(i.e. we could define an at-least class corresponding to all slots with a delay less
than 15 minutes, etc.). To reduce the number of offers when using the standard
passenger delay objective, we applied the same definition of classes in this case.
As such, the potential offers evaluated will be the same for both objectives;
however, the desirability of these offers may be different depending upon the

objective function used.

Empirical Results

As a first step in our analysis, we considered the potential benefits that could
be obtained by coordination. For our analysis, we used the same set of GDPs
at Boston’s Logan airport. Estimates of the number of passengers per flight
were obtained by considering capacities of the various aircraft types ([16]), and

assuming a load factor of 75%. For each of these GDPs, we first executed RBS
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Figure 6.14: Potential Reduction in Passenger Delays

and fixed the assignment of all the flights that were exempted from the program.
The resulting flight-slot assignment of the remaining (non-exempt) flights was
used to determine each airline’s initial allotment of slots.

Subsequently we minimized the total passenger delay cost for each individual
airline, using both objective functions discussed before. The critical times we
used in the second objective are 15, 30,45, 75, and 120 minutes. In addition, we
also minimized the overall passenger delay costs, to determine a bound on the
benefits that could be obtained with coordination. The potential improvements
are shown in Figure 6.14, which shows the relative reduction in passenger delay
costs for both objective functions. The solid line represents the improvements
using the first objective, while the dashed line represents the improvements ob-
tained using the objective which uses critical times.

Figure 6.14 shows that the potential reductions in passenger delay are sub-
stantial, ranging from 33% to 67% (the average reduction equals 52%). The

results are even more pronounced when the second objective function is used; in
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Figure 6.15: Reduction in Passenger Delay Costs using Slot Trading Potential

Reduction in Passenger Delays

this case the cost reduction ranges from 37% to 84%, and the average reduction
equals 67%. Tt should be noted, however, that the magnitude of these improve-
ments may be somewhat misleading; typically, globally optimal allocations are
usually achieved by assigning the majority of delay to General Aviation flights
and commuter carriers (which use smaller aircraft). As such, these one-sided
increases in delay would imply that GA flights and commuter carriers would
unilaterally offer to increase their delays.

To analyze the benefits from our slot trading model, we applied the IP for-
mulation with both objective functions, using the offers discussed above. The
improvements obtained by our slot trading model are shown in Figure 6.15,
which shows the relative reduction in passenger delay costs for both objective
functions. The results show that the potential benefits are significantly less than
those obtained using the on-time performance objective. Using the first objec-

tive, the average reduction in passenger delay is approximately 7.7% . Under
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the second objective, the average reduction in passenger delay cost equals 36%,
which is substantial but significantly less than the global maximum. While the
use of critical times in the second objective function has little impact on TP
performance (the average solution time equals 12.5 seconds), the use of the pas-
senger delay objective causes a significant increase in solution times (120 seconds
on average®). In addition, we determined the number of flights that were moved
up (i.e. assigned to an earlier class): using the first objective, an average of 83
flights were moved up, while using the second objective an average of 93.5 flights
were moved up. Overall, it appears therefore that the use of “at least, at most”
trades will have a much larger impact if the airlines’ objective functions can be
represented by a staircase objective with the use of critical times. This may
actually be more realistic, as it has been shown that in many cases airline flight
cost functions do have jumps associated with events such as passengers missing

connections and crews timing out.

6.5 Discussion

The purpose of this chapter was to analyze the potential benefits that could be
obtained by the introduction of slot trading during GDPs. Motivated by practi-
cal concerns, we considered a mediated bartering framework in which the FAA
acts as a broker matching offers proposed by the airlines. Given that economic
approaches do not appear to be applicable, we developed an optimization model
for the mediation problem faced by the FAA for the case where airlines can

specify “at least, at most” offers.

5the number of branch-and-bound nodes was limited to 250.
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Experimental results in two case studies that use different models of airline
decision-making showed considerable promise. Under a basic model of airline
decision-making, in which each airline’s objective is to maximize its on-time
performance, slot trading yielded significant benefits. Moreover, the experiments
showed that the IP formulation is highly efficient and that significant benefits
can be obtained even when the number of proposed offers is limited. In the
case where airlines use passenger delay minimization as their objectives, the
relative benefits appeared to be substantially less. Nevertheless, in the case
where passenger delay costs increase in a limited number of stages, the slot

trading mechanism still resulted in substantial benefits.
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Chapter 7

Conclusions

This dissertation has been motivated by the fairness considerations that arise in
a collaborative air traffic management environment. With the advent of CDM,
the equitable allocation of airspace capacity has become increasingly important,
and a key concern in procedural modifications and enhancements. The objectives
of this dissertation have been threefold: (1) to formalize and to analyze potential
fairness concepts that may apply during GDPs, (2) to study the impact of pro-
gram dynamics and propose methods to manage them, and (3) to consider the
potential benefits of increased airline control by the introduction of slot trading
mechanisms. The remainder of this chapter summarizes the conclusions for each

of these topics, and outlines potential areas for future research.

Fair Slot Allocation Concepts

Chapter 4 discussed potential approaches to the fair allocation of arrival slots
during a GDP, based on the CDM-introduced notion that airlines are entitled
to shares of the capacity based on their original flight schedules. First, we con-
sidered approaches that rely on the equitable distribution of delays, using both

multi-objective optimization methods and cost-sharing methods (e.g. the Shap-
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ley value). While equity is commonly measured in terms of the resulting delays,
we saw that methods that are explicitly based on the assignment of delays ap-
peared to have several drawbacks. In particular, such allocation schemes are not
invariant if the allocation is decomposed into stages, which often occurs during
GDPs because of weather uncertainty. In light of these drawbacks, we studied an
axiomatic approach to the allocation of slots, in which we posed certain desirable
properties as axioms that an allocation rule would have to satisfy. We showed
that, under certain intuitive axioms, any such rule can be characterized by an un-
derlying priority standard over the scheduled arrival times. While this provides
a strong basis for the RBS procedure, the result also indicates other possibilities.
In particular, we identified the so-called proportional random assignment mech-
anism as a potential alternative. We argued that RBS and proportional random
assignment are based on fundamentally different interpretations of the entitle-
ment airlines derive from their flight schedules, and that proportional random
assignment might be more applicable in situations where significant numbers of
flights are bound to be cancelled. Surprisingly enough, however, empirical re-
sults do not appear to indicate major differences between RBS and proportional
random assignment. While significant differences in the delay may occur at any
given day, on the aggregate there appear to be no systematic biases. Moreover,
our empirical analysis showed that probabilistic allocation schemes introduce
substantial variance in the delay, which would likely be unacceptable for the
airlines.

The overall objective in Chapter 4 was to provide a theoretical basis for po-
tential concepts of fairness in the allocation of slots during GDPs. An attractive

area of further research could therefore be to find an axiomatic characterization of
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the proportional random assignment method. An axiomatic characterization of
this method could formally clarify the difference in entitlement with the Shapley
value. Another area of further research could be the investigation of allocation
rules that are not necessarily collusion-proof. Of particular interest would be
methods similar to the (round-robin like) uniform gains method (see [86]); such
methods may prove to be useful in situations where airlines could strategically
submit their demands.

Another possibility would be to incorporate broader policy objectives into
the slot allocation process. In the axiomatic approach discussed in Chapter
4, we distinguished flights by a single attribute, the scheduled time of arrival.
However, it would also be possible to prioritize flights according to a richer
set of attributes. Fxamples could be aircraft size, number of passengers, or
even historical data quality. It should be noted, however, that such methods
would likely require restrictions to the airlines’ subsequent substitution process
to maintain the validity of the original priorities. For this reason, it is unlikely

that airlines would agree with such an approach.

Fair Slot Allocation: Equity as near may be

Chapter 5 considered methods that can be used to approximate fair shares in
situations where the ideal may not be attainable. While these methods could
also be used when the allocation schemes proposed in Chapter 4 lead to an
unacceptably high level of variance, the primary focus of Chapter 5 was the
management of program dynamics, that is, the flight cancellations and delays
that occur during the course of a GDP and the timing of GDPs (which leads to

flight exemptions). Based on similarities with apportionment and balanced JIT
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scheduling problems, we first discussed optimization models that can be used to
reallocate slots when flight cancellations and delays cause the current schedules
to be infeasible and/or suboptimal. One approach in particular, which mini-
mizes the deviations from predefined ideal positions in the schedule, provided a
potentially attractive alternative to the Compression Algorithm. The resulting
procedure can be interpreted as a form of rerationing according to given sets of
airline priorities and, as such, unifies both RBS and Compression.

Subsequently, we showed that the time at which a GDP is implemented can
have a significant impact on the distribution of delays. Adjustments of the pre-
viously described approaches introduced an alternative method to manage flight
exemptions. Empirical results showed that the resulting optimization models
significantly reduce the systematic biases that exist under current procedures.
Further analysis indicated that the use of these methods does not significantly
change the airlines’ distribution of delays. The use of these methods did intro-
duce a systematic reduction in the delays of smaller aircraft. However, due to
the relative small number of smaller aircraft, the overall impact of this reduction
appeared to be limited. Given these results, we believe that the optimization-
based approach presents a potentially attractive alternative to the methods that
are currently used to manage exemptions.

Finally, we considered the application of these optimization schemes with
alternative definitions of the ideal shares. We analyzed two possible alternatives:
the ideal shares that follow from the proportional random assignment scheme and
the “standard” proportional shares used in balanced jit problems. The second
definition is similar to the notion of entitlement that underlies the Shapley value.

While the use of proportional random assignment shares yielded little difference
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from RBS, the use of proportional shares had a significant impact on the resulting
allocations. We conjectured that this impact might be due to strategic behavior
by GA operators. While this conjecture requires additional analysis, it indicates
an attractive feature of using proportional shares: since these shares only depend
on the numbers of flights for each airline, they reduce current incentives to
misrepresent arrival times. Additional research in this area could consider the
impact of situations where scheduled carriers artificially increase their demand.

Overall, the methods proposed in Chapter 5 provided a general framework
for the (re)allocation of slots that allows the incorporation of many practical
“constraints”. The notion that schedules are balanced according to appropri-
ately defined quota could also be applied to address other issues, such as the

management of “pop-up” flights and of en-route resource allocation problems.

Slot Trading during GDPs
Finally, Chapter 6 explored the potential benefits of increased coordination
during GDPs. To do this, we introduced a general bartering framework in which
airlines may submit offers to trade slots to the FAA, which acts as the cen-
tral coordinator. Given the apparent limitations of economic approaches that
were discussed, we further proposed an optimization model for the FAA’s me-
diation problem. This model generalizes current (and proposed) slot exchange
procedures in that it allows airlines to submit so-called “at-least, at-most” offers,
which may be viewed as tradeoffs between pairs of flights and that are motivated
by operationally significant delay levels.
To analyze the potential benefits of this approach, we considered two case

studies that use different models of airline decision-making. Empirical results
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using historical GDP data showed considerable promise. Under a basic model
of airline decision-making, in which airlines aim to maximize their on-time per-
formance, slot trading yielded significant benefits. The IP formulation of the
mediation problem is highly efficient, and various alternative formulation fur-
ther improve IP performance. Moreover, significant benefits could be obtained
even when the number of proposed offers was limited. In the case where air-
lines use passenger delay minimization as their objectives, the relative benefits
appeared to be less. Nevertheless, in the case where passenger delay costs in-
crease in a limited number of stages, the slot trading mechanism still resulted in
substantial benefits.

The use of slot trading during GDPs offers numerous areas for further re-
search. First, the performance differences under alternate passenger delay cost
objectives merit further analysis. This can include the possibility of changing
the sets of offers evaluated (and consequently) proposed, by increasing the num-
ber of classes in our formulation of the mediation problem. In this case, the
increased size might degrade IP performance, which might make the use of al-
ternative formulations more attractive. More generally, it may be desirable to
study more complex models of airline decision-making. Such a study should
not only involve the performance of the resulting mediation problem, but also

include the evaluation of offers by airlines.
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Appendix A

Proofs

A.1 Proof of Proposition 4.3.3

A probabilistic allocation rule X associates with every possible combination of
capacities ¢ € {0, 1} and set of flights F* C F a random allocation X (7, P(F,c))
that is both feasible and efficient. In principle, X could be specified by enu-
meration, associating an allocation with each possible combination (F,c). If we
impose impartiality and consistency, however, the allocation rules can be char-
acterized succinctly. To prove this, we first analyze the case where the capacity
equals a unit vector e; and consider for any allocation rule X the allocation

X(7g, P(F,ej)). By the feasibility requirement, we have
X(tr, P(F,e;))sy =0 forj#j and X(7g, P(F,e;)); =0 if 1> j,
and impartiality implies that
X(1r, P(F.€;))p; = X(17. P(F,€)))pry i 74 = 7p0.

Suppose now that each eligible flight receives a positive share of slot j, that is,

X(tr, P(F,e;))s; > 0if 74 < j. Then, consistency implies that X (7, P(F,¢;))
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completely specifies the allocation for all F' C F.

Lemma A.1.1. Let X be any wmpartial, consistent allocation rule, and let e;
represent a unit capacity vector. Let X(1r, P(F.,e;))f; = M when Ty =1, such
that )\g >0ifi<j and )\f =0ifi>j. Then, for every F' C F we have
J
M
2 jer Ay

Proof. The proof follows by induction on the number of flights. Clearly, equal-

X(tr, P(F,€))) 1 (A1)

ity A.1 holds if F = F. Suppose now A.l holds for a given set of flights F'
and consider the set F' — {f} that results from removing flight f. Then, by

consistency we have

\
X(rr, P(F,€j))p; = (1 — ﬁ)X(tauF—{f}’ P(F—{f}.€))r.;
fEF 7'Tf
for all f/ € F—{f}, and therefore

X(TF_{f},P(F—{f}./ej))f/,j = 7 X(TFaP(Fa ej))f’,j =

D rer—{f} My D rer—{} My

forall f'e F—{f}. O

Thus, if (1) we restrict the possible capacity profiles to unit vectors and (2)
the possible allocation rules to those that assign each eligible flight a positive
share, a consistent and impartial allocation rule can can be characterized by a set
of weights )\g (0, < 7,7 < n). Intuitively, these weights assign a relative priority
to each of the flights: for instance, if )\f / )\g, = k then a flight whose oag equals
1 will always get a share of slot j that is k£ times the share of a flight whose oag
is 7',

Proposition 4.3.3 counsiders the possibility that not every eligible flight is

assigned a positive share. In this case, an impartial and consistent allocation
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rule can be characterized by the combination of a set of weights and a preordering

=, over the OAG times .

Proposition A.1.2. Let X be a consistent, impartial allocation rule, let e;
represent a unit capacity vector whose capacity at slot j equals 1, and let Tp be
any demand profile. Then, there exists a set of weights )\Z(O <1 <j) and a weak

ordering' >=; over the OAG times 0 <1 < j such that

J
X(tp, P(F,€j))f; = ﬁ if T¢ = Tp for all f' € F, and
geF "7y

X(tr, P(F,ej))f; =0 otherwise.

Proof. Consider again the set of flights F, and suppose as before that X (77, P(F,€;))f; =
)‘]%f- Now we can partition the eligible oag times into two classes: ST = {i: 0 <
i <7, M >0}and S®={i:0<i<j,X =0}. Thus, flights whose oag is in S+
receive a positive share of slot j while flights whose oag is in S° do not.
Observe that for any set of flights F* C F which contains at least one flight
whose oag is in S, we can still apply Lemma A.1.1. Therefore, X(7g, P(F,€;))s; =

0 if 7; € S and '
ZfEF:TES+ Az—f

if 7 € S*. Consequently, flights whose oag is in St will always have absolute

X(TFa P(Fv ej))f,j

priority over flights whose oag is in SY. Consequently, we can partially specify
the set of weights )\z for all ¢ € ST and the preordering »; as ¢ =; ¢ for all
ie ST, eS%and i =, ¢ =; i forall i,7/ € ST.

To fully characterize the allocation rule, we still have to consider the sets of

flight F' in which no flights whose oag is in S* are present. But this can be done

La weak ordering or preordering is an ordering relation > p that is connected (i.e. j =p 5’

or j' »p j or both) and transitive.
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by considering the set in which all flights are present expect those whose oag is
in S*. Thus, repeating this process until all flights have been assigned a weight

will eventually give the desired result. O

Thus, if capacity profiles are restricted to unit vectors the allocation rules
that are impartial and consistent can be characterized by a preordering which
partitions the oag times into priority classes, and a set of weights which specifies
the relative priorities within each class. Furthermore, since the allocations under
more general capacity profiles can be determined by reducing the recursion in

the consistency axiom to the unit capacity case, the following corollary follows.

Corollary A.1.3. A probabilistic allocation rule that is consistent and satisfies
equal treatment of equals is characterized by the n sets of weight )\g and preorder-

ings =;, which define the allocation when the capacity profile is a unit vector. O

It is an open question whether the reverse also holds.

A.2 Proof of Theorem 4.3.8

Proposition 4.3.3 shows that impartial, consistent allocation rules can be charac-
terized by a set of weights and preorderings, which specify how the rule allocates
each individual slot. As such, a flight f; could have priority over flight f at slot
J, but fy could have priority over f; at slot j+ 1. The consequence of time inde-
pendence is that the weights and preorderings are identical at each slot. Thus,
an impartial, consistent, and time independent allocation rule is characterized

by a single set of weights \; € R”, and a preordering =.
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The following lemma shows that the addition of the composition axiom forces

the weights of any two flights that are in the same priority class to be equal.

Lemma A.2.1. Let X be any impartial, consistent, and time independent alloca-
tion rule, which is characterized by the set of weights \; € R and the preordering

=q- If X satisfies composition, then
Ai=A; foralli,j such thati =g j and j =¢ 1.

Proof. Assume without loss of generality that ¢ < j. The proof follows by
considering a set of three flights F' = {f1, fo, f3} with 7, = 74, = ¢ and 7, = j,
and a capacity profile ¢ = e; + e;41. For this situation, we can calculate the
resulting allocations both by applying the consistency axiom and by applying
the composition axiom.

First, we calculate the slot shares X (7p, P(F,c)) by applying the consistency

axiom. Applying the consistency axiom by first assigning flight f; to a slot yields
X(rp, P(F.c)) sy
= X(7p, P(F,¢)) 1 i X ({2,123, P({ 2, f3} €541)) 5
+ X(7r, P(F, ) g1 X (T .5y, ({2, 3}, €))) 5
+ (1= X(7p, P(F.¢)) 15 — X(77. P(F,0)) 1,,3) X (g0, 131, P({f2s f3}50)) g

for f' = f1, f2, 7/ = j,j + 1. Solving these equations (using the previous results)

leads to the following slot share values

Ai
X(TF,P(F, C))fhj,X(TFaP(Fa C))fmj = I\ +)\_’
? J
X (. P(F. )y = =0
F, ) f3.0 — 2\ + )\j’
>\z+)\] )\7, )\]

X(TF'/ P(F7 C))fl:j+17X(TF7P<F7 C))f2:j+1 = )\ _I_ 2)\ 2A + )\ )\ + 2)\
7 9 7 ¥l 7 9
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Alternatively, the allocation X (7, P(F|c)) can also be obtained by applying the
composition axiom,e.g.
X(7p, P(F.,c)) = X(1p, P(F,€;))
+ X (7, P(F, €))7 i X (00,123 P({Uf2, [3} €541)
+ X (7. P(F, €)1 i X (70,423 P, f3}€541)

+X(TFaP(F7 ej))fs,jX(T{fl,b}’P({fl:f2}7ej+1))'

Solving these equations gives the following slot shares

Ai 1
X(TF7P(F7 c))fhj-!—l - M+ )\X(TF7P(F7 C))f2,j + QX(TFP(F C))fs,ji
i j
i 1
X(TF7 P(Fa c))f2,j+1 - mX(TFa P(F: C))fl,j + QX(TFa P(Fv c))fsd?
i j
s
X(TF7 P(F7 C))f37j+1 = m(‘x(TFa P<F> c))flyj + X(TFv P(F7 c))fmj)'
i j

Clearly, a probabilistic allocation rule that satisfies both consistency and compo-
sition should yield identical shares under both derivations. Thus, the following
equality should hold for methods that satisty both axioms.

N+A A A
N+ 2020 + A A+ 2)

A Ai +l Aj
NN 2N A 220+ A

This equation can be rewritten as

Yy Yy Yy 1

-1 — ) =0.
Aiﬂj(AiHj )()\mL)\j 3) =0

Since A;, A\; > 0 (because 7,7 are in the same priority class), it follows that

/\i;\:/\j = % and therefore that \; = \;. -
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Theorem 4.3.8 follows almost immediately from Proposition 4.3.3 and Lemma A.2.1.

Theorem A.2.2. Let ¢ be any capacity profile and F be any set of flights.
Then, for any probabilistic allocation rule X that is impartial, consistent, time

independent, and satisfies composition, there is a priority standard @ such that

X(rp, P(F,c)) = Y ——a.
veome QIO

Proof. By Proposition 4.3.3, an impartial, consistent allocation rule can be char-
acterized by a set of weights and preorderings, which specify how the rule allo-
cates each individual slot. Time independence further implies that an allocation
rule can be specified by a single set of weights \; € R"} and a preordering =q. By
Lemma A.2.1, we furthermore have that within each priority class the weights
A; are equal.

Consequently, a probabilistic allocation rule that satisfies all axioms assigns
each each slot according to the preordering >g. Since the allocation can be
decomposed into stages, it follows that the possible allocations correspond to
the priority method based on (). Finally, since flights within a priority class
are selected with equal probability, we have that each of these allocations is

equiprobable. O

A.3 Proof of Theorem 5.2.1

Theorem A.3.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6.

Proof. The proof follows using an interchange argument. Suppose x is not an

optimal solution to the IP formulation. Then, there exist another solution y
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which is optimal and differs from z in at least one position. Let j; be the
first position at which the allocations differ, and let aq,as, k1, ko be such that
Tag kajn = 1 and Yo, k.5, = 1. By construction of the greedy algorithm, we know
that pe, k., < Payk (note that the strict inequality is due to the fact that all
ideal positions are different). Moreover, we also know that yg, x, j, = 1 for some
J2 > J1-

As a consequence, we can separate the following six cases, which are de-
picted graphically below. In each of these cases, the solid lines represent the
differences between the ideal position and the actual assignment in the optimal
solution y, and the dotted lines represent the differences that would result from

an interchange of the assignments (that is, if we let y,, , j, = 1 and Yo, 4,5, = 1)-

L pa2,k’2 <pa,1,k1 S jl < j27

DPas ks Day k1 N J2

pag,kg S jl < pal,kl S j27

Das ks < J1<J2< Pay k1>

jl S pag,kg < pal,kl S j2a

jl S paz,kg S j2 < pal,kl

jl < jQ S pag,kg < pal,kl'
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J1 pag,kg pal,kl J2

It follows by inspection that in each of these cases,

(pal,k1 - j2)2 + (paz,kg - j1)2 < (paz,kg - j1)2 + (pal,k1 - j2)2'

Thus, interchanging the positions of the two flights in y will yield an allocation
with lower cost and, by construction, any such allocation is feasible. This, how-
ever, contradicts the assumption that ¢ is an optimal solution, which completes

the proof. 0

A.4 Proof of Theorem 5.3.1

Theorem A.4.1. A solution x obtained by the greedy algorithm shown in Fig-
ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6 with

constraints 5.3 added.

Proof. The proof again follows using an interchange argument. Suppose z is not
an optimal solution to the IP formulation. Then, there exist another solution
y which is optimal and differs from z in at least one position. Let j; be the
first position at which the allocations differ, and let a1, as, ki, k2 be such that

Tag ki = 1 and Yo, k5, = 1. It follows that L, ;, < k1 and L,, j, < ko, that is,
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i jo Purie Dok
neither of the flights are due at time j. By construction, we therefore know that
Das ks < Pai k- Moreover, we also know that y,, 1, j, = 1 for some j, > j; and
therefore that L,, ;, < ka.

Suppose now that L, ;, < k;. In that case, we can interchange the flights
using the argument given in Theorem 5.2.1 (e.g. the interchange will not violate
the lower bounds). Now consider the case where L,, ;, > k. Thus, flight k; of
airline a; is due before time js, but after time j;. Now let us look at all the flights
fa & Occupying the positions j; +1,..., jo — 1, and suppose all these flights were
due before time jo, e.g., Ly j, > k'. This implies that |{f € F°:etay = j'}| > 1
for at least one j' € j; +1,...,jo — 1, since we know that L,, ;, > ki. This,
however, would contradict our assumption and therefore there is at least one
J €pn+1,...,jo—1such that y, x; = 1 and Ly, < k'. Using the arguments
from theorem 5.2.1, we can therefore interchange the assignments of f,, x, and
for i in y without increasing the cost. This yields an new assignment y where
the distance between f,, r, and f,, r, has decreased. Thus, by repeating this
argument we would eventually be able to interchange the flights such that f,, ,

would be assigned to j;, which shows that z is an optimal solution to the IP. [
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Appendix B

Slot Trading Model Results

This appendix contains empirical results for the formulation discussed in Sec-
tion 6.4.1. As stated before, formulation 1 represents the standard formulation
of the mediation problem shown in Figure 6.10. Formulation 2 represents the
formulation that is obtained by using constraints 6.3, 6.4, and 6.4, while formu-
lation 3 represents the formulation that would result from the elimination of the
assignment variables. The tables show the results by solving the various formu-
lations for a number of GDPs using Cplex 7.1 on a Sun Ultra 10 workstation.
“Rows” and “Cols” represent the number of constraints resp. variables. “Nodes”
represent the number of branch-and-bound nodes, “Time” denotes the solution
times in seconds, “LP” represents the optimal value of the LP relaxation, and
“Opt” the value of the best solution value found. In all experiments, we limited

the number of branch-and-bound nodes to 1000.

167



Table B.1: Formulation 1(OV: Maximize number of flights moved up)

GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H
bos01-06-01 639 | 17046 0 6.2 36 36
bos01-09-01 740 | 19090 10 21| 56| 56
bos01-15-01 825 | 20207 0 8 76 76
bos01-16-01 668 | 19024 10 19| 58| 58
bos01-19-01 990 | 25871 0 4.4 || 103 | 103
bos01-21-01 661 | 23085 0 8.2 34 34
bos01-30-01 819 | 20298 0 2.5 75 75
bos02-05-01 609 | 12973 50 18 39| 39
bos02-08-01 279 | 15184 7 861 39| 39
bos02-09-01 914 | 25519 14 20 74 74
bos02-14-01 830 | 20709 1 5.2 76 76
bos02-16-01 386 | 9390 0 1.8 20 20
bos02-21-01 691 | 14472 0 1.3 71 71
bos02-25-01 729 | 17846 35 30| 44| 44
bos02-26-01 614 | 12711 4 3.5 53 53
bos03-09-01 946 | 25346 20 22 80 80
bos03-10-01 282 | 3581 ) 1.3 26 23
bos03-11-01 398 | 6417 3 1.8 36| 36
bos03-13-01 756 | 16123 1 2.1 7 77
bos03-14-01 807 | 20278 4 10 7 77
bos03-21-01 764 | 19433 1 3.9 66 66
bos03-22-01 745 | 17911 10 17 57| 57
bos03-23-01 832 | 19793 0 741 86| 86
bos03-26-01 488 | 8211 0 2.2 44 | 44
bos03-30-01 860 | 23254 20 22 o8 o8
bos04-06-01 585 | 18401 1 12 28 26
bos04-08-01 631 | 11931 11 9.8 | 46 46
bos04-12-01 819 | 20535 10 16 63 63
bos04-18-01 643 | 18339 10 13 24 24
bos04-22-01 528 | 13326 7 7.4 36 35
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Table B.2: Formulation 1(OV: Maximize number of flights moved down)

GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H
bos01-06-01 639 | 17046 0 9.8 36 36
bos01-09-01 740 | 19090 480 160 56 | 5l
bos01-15-01 825 | 20207 1000 250 || 99.5 o4
bos01-16-01 668 | 19024 1000 280 o8 | 54
bos01-19-01 990 | 25871 1000 250 73| 67
bos01-21-01 661 | 23085 11 31 34 34
bos01-30-01 819 | 20298 1000 230 62 53
bos02-05-01 609 | 12973 672 110 39 36
bos02-08-01 279 | 15184 0 6.4 39 38
bos02-09-01 914 | 25519 1000 880 || 72.5 67
bos02-14-01 830 | 20709 1000 250 74 60
bos02-16-01 386 | 9390 0 2 20 20
bos02-21-01 691 | 14472 1000 120 52 47
bos02-25-01 729 | 17846 30 48 44 | 40
bos02-26-01 614 | 12711 1000 100 || 46.5 41
bos03-09-01 946 | 25346 1000 440 75 70
bos03-10-01 282 | 3581 16 2.5 25 19
bos03-11-01 398 | 6417 1000 37 34| 27
bos03-13-01 756 | 16123 1000 95 || 58.5 | 52
bos03-14-01 807 | 20278 1000 110 || 60.5 o4
bos03-21-01 764 | 19433 1000 250 60 53
bos03-22-01 745 | 17911 896 230 LYY
bos03-23-01 832 | 19793 1000 230 62| 56
bos03-26-01 488 | 8211 1000 42 || 37.5 35
bos03-30-01 860 | 23254 600 370 58 54
bos04-06-01 085 | 18401 2 11 27 25
bos04-08-01 631 | 11931 173 50 46 41
bos04-12-01 819 | 20535 1000 280 61 o7
bos04-18-01 643 | 18339 0 8.1 24 23
bos04-22-01 528 | 13326 27 14 36 31
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Table B.3: Formulation 2(OV: Maximize number of flights moved up)
GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H

bos01-06-01 || 2927 | 23597 0 73] 36| 36
bos01-09-01 || 2557 | 24063 0 73] 51 51
bos01-15-01 || 2865 | 25379 0 28| 54| 54
bos01-16-01 || 2146 | 22372 0 15 54| 54
bos01-19-01 || 3553 | 32572 0 44 || 67| 67
bos01-21-01 || 3615 | 33091 0 170 | 34| 34
bos01-30-01 || 2639 | 24538 0 371 53| 53
bos02-05-01 || 1952 | 15964 1 44 || 36 | 36
bos02-08-01 || 2003 | 19254 0 23] 38| 38
bos02-09-01 || 4451 | 35065 3 530 || 67 | 67
bos02-14-01 || 3300 | 27085 2 140 || 60 | 60
bos02-16-01 || 1159 | 12084 0 6.9 20| 20
bos02-21-01 || 2143 | 18314 1 27 || 47| 47
bos02-25-01 || 3630 | 25929 0 200 || 40 | 40
bos02-26-01 || 1764 | 15985 ) 61 | 41| 41
bos03-09-01 || 4684 | 37297 3 500 || 70 | 70
bos03-10-01 657 | 4769 3 5.7 19 19
bos03-11-01 981 | 7850 2 6.7 || 27| 27
bos03-13-01 || 2684 | 21069 2 100 || 52| 52
bos03-14-01 || 2803 | 24726 0 42 || 54| H4
bos03-21-01 || 2934 | 24475 2 110 )| 53| 53
bos03-22-01 || 3052 | 24666 0 61 ] 54| 54
bos03-23-01 || 3267 | 26842 0 92| 56| 56
bos03-26-01 || 1208 | 9922 6 13 35| 35
bos03-30-01 || 3230 | 29833 0 140 || 54| H4
bos04-06-01 || 2301 | 22986 0 371 25| 25
bos04-08-01 || 2202 | 17149 0 46 || 41| 41
bos04-12-01 || 2632 | 25393 1 130 || 87| &7
bos04-18-01 || 3056 | 24922 2 200 || 23| 23
bos04-22-01 || 1948 | 17334 5 84 || 31 31
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Table B.4: Formulation 2(OV: Maximize number of flights moved down)
GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H

bos01-06-01 || 2927 | 23597 0 140 | 36 | 36
bos01-09-01 || 2557 | 24063 0 871 56| 56
bos01-15-01 || 2865 | 25379 0 58| 76| 76
bos01-16-01 || 2146 | 22372 4 29 | 58| 58
bos01-19-01 || 3553 | 32572 2 260 || 103 | 103
bos01-21-01 || 3615 | 33091 0 330 || 34| 34
bos01-30-01 || 2639 | 24538 0 320 74| T4
bos02-05-01 || 1952 | 15964 4 50 | 391 39
bos02-08-01 || 2003 | 19254 1 23 39| 39
bos02-09-01 || 4451 | 35065 2 450 | 74 T4
bos02-14-01 || 3300 | 27085 3 240 || 76| 76
bos02-16-01 || 1159 | 12084 0 761 20| 20
bos02-21-01 || 2143 | 18314 1 45 | 71 71
bos02-25-01 || 3630 | 25929 0 340 || 44| 44
bos02-26-01 || 1764 | 15985 0 21 53| 53
bos03-09-01 || 4684 | 37297 4 1000 || 80 | &0
bos03-10-01 657 | 4769 0 L7 23] 23
bos03-11-01 981 | 7850 0 391 36| 36
bos03-13-01 || 2684 | 21069 2 230\ 7T 7T
bos03-14-01 || 2803 | 24726 0 43| 77| 17
bos03-21-01 || 2934 | 24475 0 46 || 66 | 66
bos03-22-01 || 3052 | 24666 4 300 || 57| 57
bos03-23-01 || 3267 | 26842 0 110 | 86| 86
bos03-26-01 || 1208 | 9922 0 6.6 | 44| 44
bos03-30-01 || 3230 | 29833 3 270 || 58| 58
bos04-06-01 || 2301 | 22986 0 48 || 26 | 26
bos04-08-01 || 2202 | 17149 6 160 || 46 | 46
bos04-12-01 || 2632 | 25393 ) 290 || 63| 63
bos04-18-01 || 3056 | 24922 2 370 || 24| 24
bos04-22-01 || 1948 | 17334 0 16 ] 35| 35
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Table B.5: Formulation 3(OV: Maximize number of flights moved up)

GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H
bos01-06-01 691 | 299 0 0.44 36 36
bos01-09-01 || 1015 | 349 1.7 56| 56
bos01-15-01 || 1861 | 353 2 76 76
bos01-16-01 435 | 277 0.63 | 58| 58
bos01-19-01 || 2405 | 431 3.3 103 | 103
bos01-21-01 975 | 335 1.2 34 34
bos01-30-01 || 1471 | 358 1.6 75 75

bos02-05-01 822 | 268
bos02-08-01 150 | 178
bos02-09-01 || 1719 | 425
bos02-14-01 || 1382 | 383
bos02-16-01 52 82
bos02-21-01 854 | 296

0.76 || 39| 39
012 39| 39
20 74 T4
1.2)| 76| 76
001 20| 20
058 | 71 71

bos02-25-01 || 1649 | 373 1.7 44| 44
bos02-26-01 649 | 259 028 | 53| 53
bos03-09-01 || 2182 | 438 26| 80| 80
bos03-10-01 160 | 121 0.07 | 26| 23
bos03-11-01 160 | 150 0.08 | 36| 36

bos03-13-01 || 1036 | 343
bos03-14-01 || 1091 | 343

0.69 | 77| 77
083 | 77| 17

bos03-21-01 915 | 330 081 66| 66
bos03-22-01 || 1440 | 352 1.4 57| 57
bos03-23-01 || 1716 | 354 1.9 86| 86
bos03-26-01 240 | 205 031 44| 44
bos03-30-01 || 1345 | 383 L7 58| 58
bos04-06-01 207 | 211 0.21 28 | 26
bos04-08-01 || 1209 | 314 1.5 46| 46
bos04-12-01 || 1390 | 350 1.2 63| 63

bos04-18-01 499 | 261
bos04-22-01 272 | 215

034 24| 24
0.16 | 36 | 35

S OO WO OO OO OO OO OO OO OO OO OO OO NNOoO L
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Table B.6: Formulation 3(OV: Maximize number of flights moved down)

GDP H Rows ‘ Cols H Nodes ‘ Time(s.) H LP ‘ Opt H
bos01-06-01 691 | 303 9 1 36 36
bos01-09-01 || 1015 | 351 32 4.4 26 ol
bos01-15-01 || 1861 | 353 1000 o411 59.5 | H4
bos01-16-01 435 | 279 254 4.5 28 54
bos01-19-01 || 2405 | 431 1000 89 73| 67
bos01-21-01 976 | 356 0 1.1 34 34
bos01-30-01 || 1471 | 358 1000 40 62 53
bos02-05-01 822 | 269 71 4.2 39 36
bos02-08-01 181 | 211 0 0.13 39 38
bos02-09-01 || 1719 | 425 1000 09 || 72.5 67
bos02-14-01 || 1382 | 383 0 2.3 || 64.5 60
bos02-16-01 76 | 120 0 0.04 20 20
bos02-21-01 854 | 297 1000 13 52 47
bos02-25-01 || 1649 | 373 0 2.3 44 | 40
bos02-26-01 650 | 260 1000 8.2 || 46.5 41
bos03-09-01 || 2182 | 438 1000 77 75 50
bos03-10-01 170 | 134 0 0.09 25 19
bos03-11-01 170 | 159 0 0.11 34 27
bos03-13-01 || 1036 | 343 1000 21 || 58.5 | 52
bos03-14-01 || 1091 | 343 1000 24 || 60.5 o4
bos03-21-01 915 | 330 1000 19 60 53
bos03-22-01 || 1440 | 353 39 8.2 o7 | 4
bos03-23-01 || 1716 | 354 1000 60 62 | 56
bos03-26-01 240 | 205 3 0.6 || 37.5 | 35
bos03-30-01 || 1345 | 383 0 1.7 o8 o4
bos04-06-01 207 | 211 0 0.21 27 25
bos04-08-01 || 1209 | 314 6 24 46 | 41
bos04-12-01 || 1390 | 351 1000 34 61 o7
bos04-18-01 203 | 279 0 0.32 24 23
bos04-22-01 275 | 227 0 0.2 36 31
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