CDM MEMORANDUM

To:		CDM Workgroup
From:		Ken Howard
Subject:	CDM Protocol for CDMNET
Date:		August 9, 2000

The CDM message protocol has been revised to accommodate simplified subs. Also, many changes in the ADL protocol have been incorporated to reflect past changes to this code.
�CDM Protocol for CDMNET
1	Introduction
This document describes the protocol for using TCP/IP communications for CDM data exchange between airline applications and CDM/ETMS hub applications. The combined set of networks that provide airlines with TCP/IP connectivity for CDM are referred to as CDMNET. There are currently three types of application data exchange that occurs over CDMNET:
The distribution of ADL data files from the ETMS hub site to the airlines, primarily for viewing via FSM.
The feed of airline flight data messages (FC, FM, FX) from airline flight data systems to the ETMS hub site.
The exchange of GDP data (slot lists and substitution messages) that is performed under the heading of “Simplified Subs”.
This document describes the protocol for each item above.
1.1	Overview
Using the CDMNET, inter-process communications between processes at the various sites (airline, FAA, Volpe) will be performed in “sessions” through dedicated TCP/IP sockets. In each session, the application running at the user site is considered the client and the application running at the hub is considered the server. The general approach is as follows:
A client process opens a socket connection to a server process using a well-known IP address and starts a session.
Data is exchanged between the client and server indefinitely.
Either the client or server terminates the session and closes the connection.
For flight data messages, the session is opened and closed simply by opening and closing the socket connection. In other words, the client just opens a socket and begins sending messages. Each message contains client information that is used by the server to validate the connection.
For ADL distribution, additional messages are used to manage sessions. The client sends an initial connect message identifying itself; the server uses this information to validate the connection. Additional messages are used to notify client/server of a shutdown.
For Simplified Subs, the session will operate similarly to flight data messages with one exception. With simplified subs, the first application message may be from the server to the client. That means that the client must send some message after connecting to identify itself. The connect message from the ADL session will be used for this purpose.
Message formats consist of a 24-byte header (binary) optionally followed by a variable number of bytes containing application specific data. Some of the fields in the header are now obsolete, but have been preserved for backwards compatibility.
1.2	Scope
This document covers the protocol for managing socket connections and transferring data. It does not provide descriptions of the application-level data. For example, the flight data feed portion describes how to open a connection, and how to fill the message headers. However, it does not describe how to format an FC, FM, or FZ message and under what circumstances to send them. The application-level data can be found in the following documents:
ADL Feed
ADL Format Version 3 dated March 10, 2000
Flight Data Feed
CDM Message Formats Version 1.3 dated December 20, 1996
Simplified Subs
Requirements for Simplified Subs rev 6 dated April 19, 2000
1.3	Organization
This document is organized into three main sections:
1 Introduction This section.
2 ADL Protocol – Describes the protocol used to request and receive ADL files.
3 Flight Data Protocols - Describes the protocol used to exchange the CDM flight data messages between the airlines and the CDM hub site (Volpe).
4 Simplified Subs Protocol – Describes the protocol used to send and receive simplified subs messages.
5 Message Specifications - Defines the detailed formats of the messages presented in the previous sessions.
2	ADL Protocol
This section describes the protocol used between client and server to exchange ADL data.
2.1	ADL Session Protocol
2.1.1	Overview
An ADL client/server session will be established and maintained through the following sequence of events:
A client opens a socket connection to a server using a well-known IP address.
The client sends a connect message.
The server validates the connect message, and if valid, sends an accept message to the client.
Various messages are sent between client and server to exchange data.
When a client wants to terminate a session, it sends a disconnect message to the server and disconnects from the socket.
When a server wants to terminate a session, it sends a shutdown message to the client(s) and closes the socket(s).
The messages used to initiate and terminate sessions will be referred to as “session messages”.
2.1.2	Security
At the transport level, security will be provided by firewalls. It is the responsibility of each user to establish whatever firewall they feel will ensure their security. All data exchange between clients and servers will be through a socket connection; no FTP or telnet access is required.
At the application level, Volpe will maintain a table of valid IP client addresses, client names, and client tags. The server at Volpe will validate the client data whenever a client connects, and will reject any connection that is not authorized. The client data is validated when a connect message is sent, and whenever included on a data message (e.g., a flight data message). At any time if the client data is invalid, the server will immediately terminate the session and close the socket. As long as the client data is valid, messages will be allowed to flow freely between the client and server and will be processed as long as the messages are of recognized type and format.
2.1.3	Session Messages
[1] M_ATMS_CONNECT -	[CLIENT to SERVER] This is the first message sent to start a session. It identifies the source of the message (e.g., Metron, AAL).
[2] M_ATMS_ACCEPT -	[SERVER to CLIENT] Notifies the client that the connection has been accepted. The session is now started.
[3] M_ATMS_REJECT -	[SERVER to CLIENT] Notifies the client that the connection has been rejected. Includes an error code.
[4] M_DISCONNECT -	[CLIENT to SERVER] Tells the server that the client process is shutting down and going away (i.e., ends the session).
[5] M_SHUTDOWN -	[SERVER to CLIENT] Tells the client that server process is shutting down, and gives the client the opportunity to shut down gracefully (i.e., ends the session).
[6] M_STATS (not used) -	[to SERVER or CLIENT] Requests run-time statistics from the process; used to monitor and debug the system. Optionally includes a “stats” sub-type.
[7] M_STATS_REPLY (not used) -	[from SERVER or CLIENT] Sends run-time statistics back to the requester.
2.1.4	Error Handling
Loss of Client
A server will consider any of the following events to be a “loss of client”:
notification that the socket connection to the client has been lost
notification that a message to the client is undeliverable
a excessive backup in the sending queue (see below)
receipt of a disconnect message
When a server detects a loss of client it shall close the connection and remove the client from the registration tables.
Loss of Server
A client will consider any of the following to be a “loss of server”:
notification that the socket connection to the server has been lost
notification that a message to the server is undeliverable
receipt of a shutdown message
When a client detects a loss of server it shall close the connection, notify the user (as appropriate), and try to re-establish the connection.
In either case when a connection is closed the session will be considered to be ended.
Queuing
The server will queue ADL files intended for a client in the event that the socket is not being read as fast as it is being written. A maximum queue of 50 ADL files will be allowed. Once the maximum is exceeded, the server will consider the client to be inaccessible and will terminate the session.
Redundancy
Multiple servers will be provided for obtaining ADL files. A client should have the capability to attempt connections to multiple IP addresses. Only one IP address will be active at any given time.
2.2	ADL Application Protocol
2.2.1	Overview
A client running at a user site will get data from the server in the following manner:
A client first establishes a session using the full protocol described in section 2.
When a client wants data for an airport it sends a register message to the server.
The server registers that client for that airport and starts periodically shipping data files to the client.
When a client no longer wants data for that airport, it sends an un-register message.
The server stops sending files to that client for that airport.
When a client shuts down it ends the session by sending a disconnect message to server prior to closing the socket connection.
In the event that server shuts down, it closes its sessions by sending shutdown messages to all clients prior to closing the socket connections.
2.2.2	File Transfer
ADL data files will be transmitted to CDMNET sites in the following manner:
The server will compress the file using GZIP.
The server will send the file to the client through the socket in 1000 byte records until the end of file is reached.
The client will write the data to a file.
When the data transmission is complete, the server will notify the client through the socket that the file is ready.
The client will decompress and read the file.
2.2.3	ADL Messages
In addition to the general session messages described in section 2, the ADL protocol will use the following messages:
[201] M_REGISTER -	[client to server] Requests data for an airport. Includes location to place the files.
[202] M_REGISTER_ACK -	[server to client] Indicates whether the registration was accepted. Includes an error code if rejected.
[203] M_UN_REGISTER -	[client to server] Tells server to stop sending data for the named airport.
[204] M_UN_REGISTER_ACK -	[server to client] Indicates whether the un-registration was accepted. Includes an error code if rejected.
[205] M_START_FILE -	[server to client] Notifies client that a new ADL file is being downloaded through the socket and provides the filename of the ADL. This message can be thought of as a file open. Always contains the sequence number 1.
[206] M_ADL_DATA -	[server to client] Provides a packet of data from the ADL file. This message can be thought of as a file write. Includes sequence numbers 2-N.
[207] M_END_FILE -	[server to client] Notifies client that the download of an ADL file is complete. This message can be thought of as a file close. Includes the sequence number N+1.
[208] M_ADL_ERROR (not used) -	[client to server] Notifies server that a the download of an ADL file has failed. Includes the pathname of the file.
[209] M_NEW_ADL -	[server to client] Notifies client that a new ADL file has been transmitted and provides the pathname of the file.
3.	Flight Data Protocol
This section describes the protocol used to exchange flight data messages (FC, FM, FX) between client and server.
3.1	Flight Data Session Protocol
3.1.1	Overview
A client/server session will be established and maintained through the following sequence of events:
A client opens a TCP/IP socket connection to the server using a well-known address.
The server validates the IP address of the connecting client. If invalid, the server closes the connection. If valid, the session for that client has started.
Flight data messages are sent from client to server. Each message includes client name and tag, as well as the body of the message text.
The server validates the client name and tag when first flight data message is received. If there is any problem, the server closes the connection. Otherwise this and all subsequent messages are accepted.
Optionally, replies are sent from server to the client IP or ARINC address.
When a client wants to terminate a session, it closes the socket connection.
When a server wants to terminate a session, it closes the socket connection.
Additional notes about flight data sessions:
An airline may open and close sessions whenever it wishes; that is, there is not a requirement to keep an open connection with the server at all times, although that is allowed.
An airline may have multiple open connections if so desired. Multiple client tags must be assigned for this purpose.
A client tag may only be associated with one active connection at a time.
3.1.2	Security
Security will be provided at the application level. Volpe will maintain a table of valid IP client addresses. The server at Volpe will validate the connecting IP address whenever a client connects, and will reject any connection that is not authorized. Once a session is established, messages will be checked for a valid client tag. If any message is received with an invalid client tag for the sending IP address, the connection will be terminated.
Additionally, the server will maintain a table of which airline codes each client is allowed to send data for, and reject any messages that refer to unauthorized flights. (NOTE: This is the current method of authorizing data on the ARINC network.)
To support the security checking, each airline is required to provide the following parameters:
IP address where their flight data messages will originate from.
Three-letter code of sender (e.g. AAL)
Additional three-letter codes of flights which the sender is authorized to modify (e.g., EGF)
Volpe will provide a client tag for each authorized user connection.
3.1.3	Error Handling
Loss of Client
A server will consider any of the following events to be a “loss of client”:
notification that the socket connection to the client has been lost
notification that a message to the client is undeliverable
When a server detects a loss of client it shall close the connection and remove the client from the registration tables.
Loss of Server
A client will consider any of the following to be a “loss of server”:
notification that the socket connection to the server has been lost
notification that a message to the server is undeliverable
When a client detects a loss of server it shall close the connection, notify the user (as appropriate), and try to re-establish the connection.
In either case when a connection is closed the session has ended.
Message Loss
Sequence numbers will be used to track that all flight data messages and replies are being received properly. The client will assign a sequence to each message when it is sent. The server will return the sequence number on the reply for that message (optional). The server will track the sequence numbers and detect any out of sequence occurrences. Sequence errors will be logged and examined periodically to assess the performance of the communications. No recovery processing for individual messages will be implemented at this time.
Redundancy
Volpe will provide multiple servers for flight data. The client should be developed so that it will attempt to connect to different IP addresses. In the case that one connect attempt fails, the client should go on to try the next address. Only one connection should be active from any given client at a time.
3.2	Flight Data Application Protocol
3.2.1	Overview
Once the session is established, the client sends flight data messages and the server optionally sends replies. The airline has control over how their messages are acknowledged. The airline has two choices:
Whether a reply is sent for every message, or only when errors occur in processing the message.
Whether the replies go back to the sending address or to an alternate ARINC address.
These choices are controlled by the airlines through the use of keywords in the packet header record, as in the current ARINC-only protocol.
The hub site will handle generate replies in the following manner by default.
A reply will be sent for every message.
The reply will be sent to the address from which the message was received (i.e., either a IP CDMNET address or an ARINC address).
If an airline does NOT wish to get an unconditional reply for a message, it will indicate so by using the NOACK keyword in the packet header line. In this case replies will only be sent when an error is encountered in processing the message.
If an airline does NOT want to get replies at its sending address, it will indicate an alternate address in the message packet header. NOTE: The alternate address can only be an ARINC address!
The use of the NOACK and ARINC address keywords is already accounted for in the CDM message format. This protocol simply preserves what is already being used.
NOTE: There is no way to specify an alternate IP address for replies.
3.2.2	Messages
The following two message types will be used to exchange flight data messages.
[101] M_FLIGHT_DATA_PACKET -	[client to server] Sends flight data from airline to ETMS hub.
[102] M_FLIGHT_DATA_REPLY -	[server to client, optional] Sends an airline the result of the processing of a flight data packet.
The flight data messages are sent as a buffer attached to the M_FLIGHT_DATA_PACKET header. The format of the messages themselves is described separately in the CDM Message Formats document
4.	Simplified Subs Protocol
This section describes the protocol used to exchange simplified subs messages (slot lists and SS packets) between client and server.
4.1	Simplified Subs Session Protocol
4.1.1	Overview
A client/server session will be established and maintained through the following sequence of events:
A client opens a TCP/IP socket connection to the server using a well-known address.
The server validates the IP address of the connecting client. If invalid, the server closes the connection. If valid, the session for that client has started.
The client sends a connect message which identifies the client by providing a client name and tag. The client name must be configured as a simplified sub (SS) client by ETMS.
When a GDP is issued, the server sends the slot list out to any SS clients currently connected.
Once a GDP is issued, SS packets may be sent from client to server. Each message includes the body of the message text in the buffer.
Replies are sent from server to the client over the same socket that the message was received on.
At any time, the SS client can request information about the current GDPs. Replies are again sent back over the same socket.
When the state of a GDP changes (substitutions turned off, substitutions turned on, GDP cancelled), a message is sent out to any currently connected SS clients.
When an SS client wants to terminate a session, it closes the socket connection.
When the server wants to terminate a session, it closes the socket connection.
Additional notes about simplified subs sessions:
The simplified subs will use the same port as the flight data message feed. Therefore, an SS client can send regular flight data messages as part of the same session as simplified subs, if desired.
An airline may have multiple SS clients connected if so desired. These may share the same name, but each concurrent client must have a unique client tag.
4.1.2	Security
Security will be provided at the application level. Volpe will maintain a table of valid IP client addresses. The server at Volpe will validate the connecting IP address whenever a client connects, and will reject any connection that is not authorized. Once a session is established, messages will be checked for a valid client tag. If any message is received with an invalid client tag for the sending IP address, the connection will be terminated.
Additionally, the server will maintain a table of which airline codes each client is allowed to send data for, and reject any messages that refer to unauthorized flights. (NOTE: This is the current method of authorizing data on the ARINC network.)
To support the security checking, each airline is required to provide the following parameters (this data is required for configuration purposes and is not part of the real-time session data):
IP address from which their flight data messages will originate.
Three-letter code of sender (e.g. AAL)
Additional three-letter codes of flights which the sender is authorized to modify (e.g., EGF)
Volpe will provide a client tag for each authorized user connection.
4.1.3	Error Handling
Loss of Client
A server will consider any of the following events to be a “loss of client”:
notification that the socket connection to the client has been lost
notification that a message to the client is undeliverable
When a server detects a loss of client it shall close the connection and remove the client from the registration tables.
Loss of Server
A client will consider any of the following to be a “loss of server”:
notification that the socket connection to the server has been lost
notification that a message to the server is undeliverable
When a client detects a loss of server it shall close the connection, notify the user (as appropriate), and try to re-establish the connection.
In either case when a connection is closed the session has ended.
Message Loss
Sequence numbers should be used to track that all data messages and replies are being received properly. The client should assign a sequence number to each message when it is sent. The server will return the sequence number on the reply for that message (replies may be optional). The server will track the sequence numbers and detect any out of sequence occurrences. Sequence errors will be logged and examined periodically to assess the performance of the communications. No recovery processing for individual messages will be implemented at this time.
Redundancy
Volpe will provide multiple servers for flight data. The client should be developed so that it will attempt to connect to different IP addresses. In the case that one connect attempt fails, the client should go on to try the next address. Only one connection should be active from any given client at a time.
4.2	Simplified Subs Application Protocol
4.2.1	Overview
4.2.2	Messages
The simplified subs protocol will use the following messages:
[1] M_ATMS_CONNECT -	[CLIENT to SERVER] This is the first message sent to start a session. It identifies the source of the message (e.g., Metron, AAL).
[101] M_FLIGHT_DATA_PACKET -	[client to server] Sends a simplified sub message packet to the ETMS hub for processing.
[102] M_FLIGHT_DATA_REPLY -	[server to client] Sent from ETMS hub to client to indicate the result of the sub processing.
[103] M_SLOT_DATA -	[server to client] Sends slot list data to an airline client as part of a GDP (e.g., initial GDP, compression, revision).
[104] M_GDP_REQ -	[client to server] Sent from client to ETMS hub to request a new slot list. (NOTE: Reply is an M_SLOT_DATA message.)
[105] M_GDP_REPLY -	[server to client] Sent from ETMS to client with the response to the corresponding request.
 [106] M_GDP_MESSAGE -	[server to client] Sent from ETMS to client when a GDP is purged (cancelled), when subs are turned off, or when subs are turned on.
The detailed application-level message contents (e.g., slot list format, SS packet format) are described in the Simplified Subs Requirements document. The following section provides mroe detail on the message header format.
5.	Message Specifications
Messages consist of a message header, followed by a message body. The message header is fixed length (24 bytes), consisting of six 4-byte integers. The last field of the header specifies the byte count of the optional data buffer. A message contains the following fields:
1) Message Type - 	Integer value of the message type. [4-byte integer]
2) Message Source -	Encoded source identifier assigned by Volpe. Not used for flight data messages. [4-byte integer]
3) Message Destination -	Encoded destination identifier assigned by Volpe. Not used for flight data messages. [4-byte integer]
4) Client Tag -	Used to identify one of a set of clients (e.g., if there is more than one client running at a site). [4-byte integer]
5) Short Data -	32 bits of message-specific data. Included with every message. [4-byte integer]
6) Message Length -	 Length of the data buffer (may be zero; maximum is 128 Kbytes). [4-byte integer]
7) Data Buffer -	An array of bytes that is 'Message Length' bytes long. It is only sent if the Length field in the header is non-zero. Maximum size is 128 Kbytes. Format of the information in the buffer is message-specific.
The remainder of this section describes the detailed contents for each of the message types described above. Literal constants are shown in square brackets; that is, if the filed is supposed to contain the integer value 1, it is shown is [1].
[1] M_ATMS_CONNECT
This message is used to tell a server at the ATMS hub site that a new client process is coming on-line. The message identifies where the client is running and includes an encrypted password. The server validates the password and the request. If it is valid, the session starts. The server notifies the client whether the connection was accepted or not. If there is more than one client at this site, the client tag field must contain different invocation numbers for each client.
The detailed field contents are as follows:
1) Message Type - 	M_ATMS_CONNECT [1]
2) Message Source -	encoded source identifier [103] for FSM; [0] for flight data or simplified subs client]
3) Message Destination -	encoded destination identifier [1 or 0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	[0]
7) Data Buffer -	N/A
[2] M_ATMS_ACCEPT
This message from the server tells the client that the socket connection has been set up correctly. The short data field should be zero, and there is no message body.
The detailed field contents are as follows:
1) Message Type - 	M_ATMS_ACCEPT [2]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	[0]
7) Data Buffer -	N/A
[3] M_ATMS_REJECT
This message from the server tells the client that the connection has not been accepted. The short data field contains an error code explaining the cause of the failure. I have started a list of error codes, but we probably will come up with more along the way.
The detailed field contents are as follows:
1) Message Type - 	M_ATMS_REJECT [3]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	error code (see following list)
6) Message Length -	[0]
7) Data Buffer -	N/A
Error codes are as follows:
[1] - UNKNOWN MESSAGE SOURCE
[2] - INVALID PASSWORD
[3] - SERVER PROCESSING CURRENTLY NOT AVAILABLE
[4] - CLIENT WITH SAME INVOCATION NUMBER ALREADY RUNNING
[4] M_DISCONNECT
This message is sent from the client to the server to indicate that the client process is shutting down. The short data field is zero and there is no message body.
The detailed field contents are as follows:
1) Message Type - 	M_DISCONNECT [4]
2) Message Source -	encoded source identifier [103]
3) Message Destination -	encoded destination identifier [1]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	[0]
7) Data Buffer -	N/A
[5] M_SHUTDOWN
This message is sent from a server to a client to indicate that the server process is shutting down. The short data field is zero and there is no message body. This gives the client the chance to shut down gracefully.
The detailed field contents are as follows:
1) Message Type - 	M_SHUTDOWN [5]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	[0]
7) Data Buffer -	N/A
[6] M_STATS
This message is sent from the server to a client to request information pertaining to the execution and state of the client. The short data filed may contain an optional stats type; if zero, defaults statistics are provided. This message (along with the reply) makes it possible for developers and system support personnel at Volpe to debug and monitor the performance of the entire system.
The detailed field contents are as follows:
1) Message Type - 	M_STATS [6]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	stats type
6) Message Length -	[0]
7) Data Buffer -	N/A
[7] M_STATS_REPLY
This message is sent from a client to the server to respond to a stats request (see previous message type). The information required varies by client. The information will be in formatted ASCII strings, which are placed in the data buffer.
NOTE: The information required in a stats reply is defined in Appendix A.
The detailed field contents are as follows:
1) Message Type - 	M_STATS_REPLY [7]
2) Message Source -	encoded source identifier [103]
3) Message Destination -	encoded destination identifier [1]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	formatted reply to the stats request
[101] M_FLIGHT_DATA_PACKET
This message from a client to the server sends flight data message or simplified subs messages from the airline to the ATMS hub. The data buffer contains the packet formatted as it currently is being sent through ARINC; that is, packet header followed by a variable number of messages terminated by line feeds. The short data field contains a sequence number, which is simply an integer incremented by one for each packet sent; the range of the sequence numbers is 1 to 9999.
The detailed field contents are as follows:
1) Message Type - 	M_FLIGHT_DATA_PACKET [101]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number (1 to 9999)
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a message packet containing a header line and a variable number of messages as defined in the simplified subs requirements document
[102] M_FLIGHT_DATA_REPLY
This message from the server to a client sends the replies to the flight data packets or simplified subs packets from the ATMS hub to the airline. The data buffer contains the same reply that is currently being sent through ARINC; that is, an acknowledgment line followed by a variable number of error messages. The same options will exist: NOACK if no “good” acknowledgment is desired and an optional ARINC address for errors. (The FDP server will always send errors back to the FDS client through the socket, but will optionally also send error messages to the ARINC address if provided.) Packet components are not terminated by line feeds, as in the ARINC protocol, but sent as separate strings in the data buffer. The short data field contains the sequence number from the flight data message to which the server is replying.
The detailed field contents are as follows:
1) Message Type - 	M_FLIGHT_DATA_REPLY [102]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number (from flight data message)
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a message packet containing an acknowledgment and a variable number of error messages as defined in the simplified subs requirements document
[103] M_SLOT_DATA
This message from the server to the client sends slot lists (as part of a GDP) from the ATMS hub to the airline. The data buffer contains the slot list formatted as a stream of ASCII as specified in the simplified subs requirements documents. The short data field contains a sequence number, which is simply an integer incremented by one for each packet sent; the range of the sequence numbers is 1 to 9999.
The detailed field contents are as follows:
1) Message Type - 	M_SLOT_DATA [103]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	if in response to an M_LOST_DATA_REQ, the sequence number from the request message; otherwise [0]
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a slot list formatted according to the simplified subs requirements document
[104] M_GDP_REQ
This message from the client to the server sends slot list to the ATMS hub. The data buffer contains the slot list request formatted as a stream of ASCII as specified in the simplified subs requirements documents. The short data field contains a sequence number, which is simply an integer incremented by one for each packet sent; the range of the sequence numbers is 1 to 9999.
The detailed field contents are as follows:
1) Message Type - 	M_SLOT_DATA_REQ [104]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number (1 to 9999)
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a slot list request formatted according to the simplified subs requirements document
[105] M_GDP_REPLY
This message from the server to the client sends the response to a GDP request. The data buffer contains the message formatted as a stream of ASCII as specified in the simplified subs requirements documents.
The detailed field contents are as follows:
1) Message Type - 	M_GDP_REPLY [105]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number from M_GDP_REQ message
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a GDP message formatted according to the simplified subs requirements document
 [106] M_GDP_MESSAGE
This message from the server to the client sends GDP messages from the ETMS hub to the airline. The data buffer contains the message formatted as a stream of ASCII as specified in the simplified subs requirements documents.
The detailed field contents are as follows:
1) Message Type - 	M_GDP_MESSAGE [106]
2) Message Source -	[0]
3) Message Destination -	[0]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	[0]
6) Message Length -	total number of bytes in the data buffer
7) Data Buffer -	a GDP message formatted according to the simplified subs requirements document
 [201] M_REGISTER
This message from the server client tells server that this server wants data for a particular airport. The short data field tells the server what type of site the client is (CDMNET or ETMS). The message body should contain the name of the airport and the pathname where the file will go. For ETMS sites, two pathnames will be sent: the pathname that the server should use to FTP the file to the user site, and the pathname that the server will use to access the file. The server will construct full pathnames for the files. For CDMNET sites, server will send this pathname to client in the M_START_ADL message.
The detailed field contents are as follows:
1) Message Type - 	M_REGISTER [201]
2) Message Source -	encoded source identifier [103]
3) Message Destination -	encoded destination identifier [1]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0 for CDMNET; 1 for ETMS
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	airport name, client pathname, and ETMS pathname (ETMS sites only); fields are space delimited
[202] M_REGISTER_ACK
This message from the server to the client client tells client whether the registration was accepted or not. The short data field is 0 if the registration was accepted, or contains an error code is the registration was not accepted. The data buffer contains the name of the airport for which the registration was requested.
The detailed field contents are as follows:
1) Message Type - 	M_REGISTER_ACK [202]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0 if OK; error code if rejected
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	airport name
Error codes are as follows:
1 - UNKNOWN AIRPORT
2 - AIRPORT ALREADY REGISTERED
3 - MAXIMUM NUMBER OF AIRPORTS EXCEEDED
[203] M_UN_REGISTER
This message from the client client tells server to stop collecting data at a particular airport for this client. If this is the last client attached to that airport, then the ADL Data Distributor may stop collecting data completely for that airport. The short data field should be zero. The message body should contain the airport name, or the keyword "ALL". If "ALL" is specified, then the ADL Data Distributor should stop collecting data for all airports which have been previously registered by this client.
If a client client is shutting down, it should send an un-register for all airports currently being collected prior to sending a M_DISCONNECT message.
The detailed field contents are as follows:
1) Message Type - 	M_UN_REGISTER [203]
2) Message Source -	encoded source identifier [103]
3) Message Destination -	encoded destination identifier [1]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	airport name or “ALL”
[204] M_UN_REGISTER_ACK
This message from the server to the client client tells client whether the un-registration was accepted or not. The short data field is 0 if the un-registration was accepted, or contains an error code is the un-registration was not accepted. The data buffer contains the name of the airport for which the un-registration was requested.
The detailed field contents are as follows:
1) Message Type - 	M_UN_REGISTER_ACK [204]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0 if OK; error code if rejected
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	airport name
Error codes are as follows:
1 - AIRPORT NOT REGISTERED
2 - NO AIRPORTS REGISTERED
[205] M_START_ADL
This message from the server to client tells client that server is beginning to send a new ADL file. The data buffer contains the pathname of the file. client opens the file and waits for data packets, which it will write to the file. client also starts a sequence counter for the file packets. The short data field contains the first sequence number which is always one.
The detailed field contents are as follows:
1) Message Type - 	M_START_ADL [205]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	1
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	pathname of file
[206] M_ADL_DATA
This message is used to send a piece of an ADL file from server to client. The data buffer contains the data. client will extract the data from the buffer and write to the file that is already open. The short data field contains the packet sequence number. client checks the sequence number and notifies server if there is an error.
The detailed field contents are as follows:
1) Message Type - 	M_ADL_DATA [206]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	data
[207] M_END_ADL
This message from the server to client tells client that the ADL file is complete. The data buffer contains the pathname of the file. The short data field contains the last sequence number. client checks it and if all is well, closes the file.
The detailed field contents are as follows:
1) Message Type - 	M_END_ADL [207]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	sequence number
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	pathname of file
[208] M_ADL_ERROR
This message from client to server tells server that there was an error in the file transmission; that is, packet was missing or received out of sequence. The short data field should be zero. There is no data buffer. This message tells server to abort the transmission.
The detailed field contents are as follows:
1) Message Type - 	M_ADL_ERROR [208]
2) Message Source -	encoded source identifier [103]
3) Message Destination -	encoded destination identifier [1]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0
6) Message Length -	0
7) Data Buffer -	N/A
[209] M_NEW_ADL
This message from server to the client client is sent after an ADL file has been successfully transferred to the client site. The message is sent whether the file is FTP’d or sent through the socket using the above messages. The short data field is zero. The message body contains the full pathname of the new ADL.
The detailed field contents are as follows:
1) Message Type - 	M_NEW_ADL [209]
2) Message Source -	encoded source identifier [1]
3) Message Destination -	encoded destination identifier [103]
4) Client Tag -	client identification number assigned by Volpe
5) Short Data -	0
6) Message Length -	total number of bytes in data buffer
7) Data Buffer -	pathname of file
Appendix A - Stats Information
The stats messages are currently used in ETMS to allow system developers and support personnel to better debug and monitor the wide-area system. It has proven enormously valuable. The information allows one to quickly find information such as:
has a process restarted recently?
are replies taking too long?
is there a logical disconnect between a client and server (e.g., client is waiting for ADL but server is not planning to send it)?
The statistics required for each client or server vary by the application, and are defined below. Anyone developing a client should adhere closely to the format defined below!
The data collector should provide the following information in a stats reply:
Line 1 - Software version number
Line 2 - Site name of the client
Line 3 - Elapsed time since execution
Line 4 - Current time in GMT
Line 5 - blank
Line 6 - Number of airports monitored
Line 7.N - Last ADL file and time received for each airport.
A sample output follows:
	client Version: 3.01
	My Site: 0101
	Elapsed: 5 days 12 hours 46 minutes
	Current time: 19:40:17

	Monitoring 2 airports
	BOS last update: bos__.lcdm.22193023.01 recd at: 19:31:30
	PIT last update: pit__.lcdm.22193145.01 recd at: 19:32:30
CDM Message Protocol		7/19/00

	� PAGE �17�

