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Summary  

Much of the delay in the US National Airspace 
System (NAS) arises from convective weather. One 
major objective of our research is to take a less 
conservative route, where we take a risk of higher 
delay to attain a better expected delay, instead of 
avoiding the bad weather zone completely. We 
address the single aircraft problem using a Markov 
decision process model and a stochastic dynamic 
programming algorithm, where the evolution of the 
weather is modeled as a stationary Markov chain. 
Our solution provides a dynamic routing strategy 
for an aircraft that minimizes the expected delay. A 
significant improvement in delay is obtained by 
using our methods over the traditional methods. In 
addition, we propose an algorithm for dynamic 
routing where the solution is robust with respect to 
the estimation errors of the storm probabilities. To 
the Bellman equations, which are derived in solving 
the dynamic routing strategy of an aircraft, we add a 
further requirements: we assume that the transition 
probabilities are unknown, but bounded within a 
convex set. The uncertainty described in our 
approach is based on likelihood functions. This 
makes the robust Dynamic Programming (DP) 
"tractable" (that is, not much more complicated than 
the original DP) and yet not conservative. Our 
algorithm optimizes the performance of the system, 
given there are errors in the estimation of the 
probabilities of the storms. 

 

Overview 
 Air traffic delay due to convective weather 

has grown rapidly over the last few years. 
According to the FAA, flight delays have increased 
by more than 58 percent since 1995, cancellations 
by 68 percent.  The delay distribution can be 
described in the figure below: 

Figure 1: Air Traffic delay distribution in US in the 
month  of June, 2000 and 2001.  1:Weather 2:Volume 3: 
Equipment 4:Runway 5.Other. 

 

It is obvious from the above graph that   
weather  (which is around 80% of the total delay) is 
the main contributor for the delay in the US Air 
Traffic Control system. The cost of delays to 
airlines and passengers are billions of US dollars 
per year. The air traffic flow management (TFM) 
problem under deterministic environment is a well 
addressed problem [2], [3], [4], [13], [14], [15]. As 
the major portion of this delay is due to bad 
weather, which is not deterministic in nature. As a 
consequence, TFM problems cannot be addressed 
in a deterministic setting. 
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 In the National Airspace System, Traffic flow 
management (TFM) decisions for release and 
Federal Aviation Administration controllers and 
airline dispatcher make routing of aircraft fleets 3-4 
hours in advance of the actual operation. 
Knowledge of the location and the intensity of the 
hazardous convective weather 3-4 hours ahead is 
key to select air routes. Since, weather is stochastic 
in nature, there is an urgent need for automation 
tools, which explicitly deals with the random 
dynamics of the storms and provides solutions that 
reduce the expected delay in the air traffic control 
system. A dynamic routing strategy is provided in 
[1], where the expected delay is minimized for an 
aircraft. It is shown in [1] that a significant 
improvement in delay is be obtained by using 
Dynamic Programming algorithms over the 
traditional methods. 

However, the algorithm in [1] is based on a 
very strong assumption: the storm probabilities are 
exactly known and we can have the perfect point 
estimates of transition probabilities. In this paper, 
we will see that the optimal routing of aircraft is 
very sensitive to these storm probabilities. A slight 
mistake in estimating the storm transition 
probabilities will change the optimal solution 
significantly. So the algorithm can work well if  the 
exactly accurate probabilities of storms are 
obtained. 

In the recent years, FAA, the national weather 
service (NWS), and airline operations centers have 
collaborated to produce the best convective forecast 
available under the current forecasting state of art 
[16]. These forecast, named as Collaborative 
Convective Forecast Product (CCFP), are 
improvements over other conventional products but 
are far from perfect forecast. According to the real 
time verification statistical techniques being 
employed by National Oceanic and Atmospheric 
Administration Forecast Systems Laboratory, the 
current forecast typically verifies at 0.75 False 
Alarm Rate and 0.28 probability of detection. For 
any kind of strategic or tactical route planning, 
FAA believes a maximum False Alarm Rate of 0.20 
and a minimum probability of detection of 0.80 is 
highly desirable.  For example, some of the days 
when the predicted and actual weather varied 
significantly are given below:  

 

 

 

Figure 2: CCFP vs. Actual weather on May 19, 2001. 
Yellow polygons predict the probability of weather 
occurring at forecast time 20-50%, with a predicted 
coverage of 25-49%. A huge airspace was unused due 
the prediction, which actually turned out  to completely 
good. 

 

 

 

 

Figure 3: Example where actual weather was much moe 
widespread than the forecast  

 

 The optimal solution derived in [1] is 
potentially sensitive with the estimation error of the 
transition probabilities and a very accurate 
estimation of storm probabilities is required to 
obtain a result that can be used in practice. In this 
paper, we present a robust Dynamic Programming 
approach, where the algorithm optimizes the 
aircraft routing of the system, despite there are 
errors in the estimation of the probabilities of the 
storms. 
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Problem Set-up 
 We consider a two-dimensional flight plan of 

an aircraft. We are interested in finding the optimal 
path of a single aircraft in the en-route portion. 
There are inherent uncertainties in the En-route 
portion of the flight. We address the problem as in a 
decentralized fashion, as a large-scale stochastic 
dynamic programming problem. Consider the 
following scenario: an aircraft is flying from the 
origin  to the destination. There are many obstacles 
that might interfere with the shortest possible route. 
These obstacles can be both stochastic and 
deterministic in nature. Examples of the stochastic 
`` no zones'' include storm zones, intersections of 
the flight plan of other aircraft, strong wind zones 
and the deterministic ``no zones'' include military 
and national security airspace. Given those 
constraints, the optimal route of the aircraft is the 
one that provides the minimal cost (time, fuel) 
while avoiding all of the obstacles. 

In the optimization problem, it is easier to deal 
with the deterministic ``no zones'', as we can assign 
them an infinite cost if aircraft were to penetrate 
through the zones. But crux of the weather problem 
is to deal with the stochastic ``no zones’ ’ . In the 
current practice, those stochastic zones are assumed 
to be unusable, and solution proceeds as if they are 
deterministic constraints. As those zones were just 
predicted to be of unusable with a certain 
probability, it often turns out that the zones were 
perfectly usable. The rerouting strategies do not use 
these resources and as a result, the airspace 
resources are under-utilized, leading to congestion 
in the remaining airspace. 

 Various weather teams (CCFP, ITWS etc) 
produce predictions that some zones in the airspace 
will be unusable in certain time and their 
predictions are dynamically updated with time.  
However, as described in the previous section, 
those predictions are often incorrect which makes it 
even harder to select an optimal routing. 

  In our proposed model, we will not exclude 
the zones, which are predicted to be unusable (with 
some probability) at a certain time. Instead, we will 
assign some cost to those zones, a cost that will 
depend upon the state of the system. Our solution 
will take into consideration the fact that there will 
be more updates with the course of flight and 

recourse will be applied accordingly [10 11 12 ]. 
Moreover, we will analyze the previous data and 
count the number of times it goes from each state to 
different states. From this counting, we form a 
likelihood constraint, which describes the 
uncertainty set within which the transition matrix is 
bounded.  We take a route that will provide us the 
best-expected delay, where the time varying 
transition probability matrix bounded within the 
uncertainty set is acting as an opponent. 

For this class of problems, we look for the 
``best policy'', not the ``best path'. Determining the 
``best policy'' is deciding where to go next given the 
currently available information. We consider the set 
of decisions facing an aircraft that starts moving 
towards the destination along a certain path, with 
the recourse option of choosing a new path 
whenever new information is obtained. 

 

Weather Model 

Various weather teams provide the 
probability of a storm at a particular place at a 
particular time. The weather information is updated 
in about every 15 minutes. The further away the 
prediction is from the event, the more unreliable it 
becomes and vice versa. We can discretize the time 
in a number of 15 minutes time intervals. From the 
weather science, we can assign a probability ``Pr'' 
or ``Qr'' for a particular region such that, 

Pr = probability (there will be a storm in that region 
in the next 15 minutes time interval/there is a storm 
in the current time in the region), or 

Qr = probability (there will be no storm in that 
region in the next 15 minutes time interval/there is 
no storm in the current time in the region) 

It is also realistic to assume that the aircraft has 
a perfect knowledge about the regions that are 15 
minutes (15 times the velocity of the aircraft 
provides the distance) away from it. Whenever an 
aircraft is in 15 minutes away from the storm 
region, the pilot knows for sure whether there is a 
storm in that region or not. The probability of storm 
at a particular region is time varying and takes a 
value 0 or 1 when it reaches 15 minutes away from 
the region. If P is defined as the probability of the 
storm in the next interval, the dynamics of P will 
follow a path described below, 
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Figure 4: Variations of the true probability of storm with 
time 

We can discretize time as 1,2,...,n  stages, 
where “1'' corresponds to the time 0-15 minutes 
from the current time, ''2'' corresponds to the time 
15-30 minutes from the current time and so on. Let, 
T is the time required to go from the origin to 
destination in the worst possible routes (where the 
worst possible route  is defined as the route where 
nominal path is followed assuming no storm and the 
recourse is applied just  before the storm zone to 
avoid the storm). No policy will take more time 
than T. Total number of stages can be calculated by 
the following formula, 

1
15

)
15

mod(

max +
−

=

T
T

n                    (1) 

Suppose there are 1,2,..,m storms that are 
predicted to happen that might force the aircraft to 
deviate from it's nominal path. We can define state 
'1' corresponding to the state as having storm in a 
region at a particular stage and state  '0' 
corresponding to state as having no storm at a 
particular stage in that region. As we know the 
status of any storm in the time interval of 0-15 
minutes (stage 1), we can assign 0(1) to every storm 
at the stage 1. Again we also know the conditional 
probability of having (not having) a storm in a 

region in the next 15 minutes time interval (stage 
2), given there is a storm (no storm) in the current 
time (stage 1) in the region. If we assume that the 
probability of storm in a particular zone varies in a 
Markovian fashion, we can represent the transition 
model of each storm in the following manner. 

We can define, 1p  is the probability of no 
storm in the next stage if there is no storm in the 
current stage in a particular region and  1q  is the 
probability of having a storm in the next stage if the 
there is a storm in the current stage in that particular 
region. 

        In the same way, we can define the 
probabilities mm qpqpqp ,,.....,,,, 3322 .  If there 

are m  storms, it will be a m2 state Markov chain.  

A  m2  tuple vector can describe the storm situation 
completely, i.e., [ 1 0 0 0..0] denotes that there is a 
storm in zone '1' and the rest of the predicted bad 
weather zones are storm free. 

We can define {=S 1, 2 ,….,M} as the set of 
all the states where, 1 =[0 0 0 0 ..0], 2 =[1 0 0 0 ..0],  
3 =[0 1 0 0 ..0],......,  M=[1 1 1 1 ..1] ( m2 th state). 

The transition matrix P for the Markov chain is  

mm 22 ×  matrix whose ),( ji th  entry ijp  denotes 

the probability of ij th state in the next stage, given 
the current state is i. The transition matrix can be 
defined as follows, 

                          �
�
�

�

�

�
�
�

�

�

=
mmm

m

pp

pp

P

2212

1211

....

................

......

                   (2)                            

If the current state iX =1  is given, the 

probability that the k th state jX k = can be 

determined as follows, 

k
ijk PiXjXp === )/( 1                                     (3) 

Which is the ),( ji th component of  kP matrix.  

The P  matrix is an input in our algorithm. We 
can form a P  matrix in a storm situation where the 
storms are moving and are not probabilistically 
independent. But for the demonstration in this 

P 
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No Storm 
 

Time 
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1 

(15 minutes away 
from the region) 
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paper, we assume that there is no movement of 
storms, i.e., the zones where no storms are predicted 
to happen are assumed to remain as perfectly usable 
by the aircraft over all time and storms don't expand 
or contract over time (relaxation of this assumption 
will increase the size of the probability matrix).  

 

Uncertainty model of the transition probability 

)( ijpP =  is the SS ×  dimensional 

transition probability matrix.  We assume that we 
can observe the initial state, which is the current 
status of the storms in the airspace. 

By exploring the past data, we obtain a matrix, 
which comprise the number of times each state 
(storm condition) makes a transition from one state 
to other (number of time from state i  to state j  is 

ijN ). 

The likelihood function can then be written as 

∏=
ji

N
ij

ijpPL
,

)(                                          (4) 

The log-likelihood function is, 

)log()(
,

ij
ji

ij pNPl �=                               (5) 

In addition, we require that the estimated 
probabilities are positive 

SjSipij ...,.........2,1,,........,2,1,0 ==∀≥   (6) 

and satisfy the constraints of a transition matrix: 

Sp
j

ij ,........2,11,1 =∀=�                        (7) 

The maximum likelihood estimate can now be 
obtained by solving the convex optimization 
problem 

)7)(6.(.:)(max tsPl
P

                                   (8) 

This is a separable convex optimization 
problem that can be solved analytically. The 
optimal solution to  the optimization problem is, 

�=
∧

j
ij

ij
ij N

N
p                                                 (9) 

This is the Maximum Likelihood Estimate 
(MLE) and the optimal value of the log likelihood 
function corresponding to these probabilities is 
defined as maxβ . .  

A classical description of uncertainty in a 
maximum likelihood setting is via the likelihood 
region is as follows, 

})(,,0:{
,

β≥=≥∈ �×
ij

ji
ij

SS plopNePePRP  

                                                                             (10)   

Where, β is chosen as maxββ <  and eis the 

vector of all ones. 

In our problem,, we only need to work with 
the un certainty on the each row ip , that is, with 

projections of the set above. Due to the separable 
nature of the maximum likelihood problem, the 
projection of the above set onto the variable ip of 

the matrix P can be given explicitly, as 

kj
ik j

kji

ii
j

i

TS
i

NN

wherejpjN

eeppRp

log

,} ,)(log)(

,,0:{)(

���
�

≠

+≡

≥
=≥∈≡Ρ

ββ

β
β

                (11) 

          We can calculate β  that will correspond to 
a desired level of confidence in the estimate. In 
order to do so, let’s define a vector θ   obtained by 
stacking  the first |1| −S   elements of the each row 
of  the probability matrix. Provided some regularity 
conditions hold [18], it is possible to make Laplace 
approximation of the Likelihood function and we 
can make the following asymptotic statement about 

the distribution of θ  , that is ))(,(~ θθθ IN
∧

. That 

is θ  is normally distributed with the mean 
∧
θ  given 

by (9) and )(θI  is the Fisher Information matrix 
given by , 

              ))(()(
2

θ
θθ

θ θ lEI
kj ∂∂

∂−=                 (12) 
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We can approximate )(θI   with the 
observed information matrix, which is meaningful 

in the neighborhood of 
∧
θ  . The equation of the 

observed information matrix is given by, 

)()(
2

, θ
θθ

θ lI
kj

kjo ∂∂
∂−=                    (13) 

 

This is true for large number of sample 

[18]. We further define, )(0
1 θIH =− . Then  the 

parameter β  is chosen to be the smallest such that, 

under the probability distribution ),( 1
∧

−ℵ Hθ , the 
set,  

})(;{ βθθξ β ≥= l  

where )(θl  is the quadratic approximation to 

θ around  
∧

= θθ , that is, 

)()(
2

1
)( max

∧∧
−−−= θθθθβθ Hl T  

has the probability larger than a threshold )1( α− , 

where (say) %5=α  in order to obtain the 
%95 confidence level. 

It turns out that, we can solve for such a  
β  explicitly, 

)
)(2

()1(

,

max

|1\||
2 �

−
=−

−

ji
ijN

F
Ss

ββα χ         (14)                           

where 
|1\||

2
−Ss

F
χ

 is the cumulative 2χ  distribution 

with the degrees of freedom |1||| −SS . 

 

 

 

Graphical representation of the airspace 

Our problem is to find out the direction of  

the aircraft in a way that will take into account the 
fact that more information will be received in the 

course of the flight.  The aircraft will stick to the 
direction till it receives another weather update. In 
the previous section, we have already discritized the 
time and divided the decision horizon in a number 
of stages. An aircraft will not receive any 
information until it goes to another stage. We 
simulate the variation of the probability of storm by 
using our Markovian model. The direction to be 
taken in each stage is a continuous problem, which 
is hard to solve. As it is a common practice in ATC 
process that aircraft follow some fixed waypoints, it 
is an acceptable formulation to discritize the 
airspace. We represent the airspace by a rectangular 
grid where the arc length is 8 n.mi . When the 
aircraft is at the origin, the solution of the routing 
problem lies within the set of grid points that can be 
reached by the aircraft in 15 minutes, before the 
aircraft receives the next update. Once, the point is 
decided, the aircraft is recommended to  fly straight 
to the point and the vector direction  of the aircraft 
can be determined. The point to be noted that the 
arc length is a design parameter and can be chosen 
by the planner. Reducing  the distance between  two 
grid points result in  better solution, but it incurs 
more expensive calculation. Also, reducing   the 
distance between two grid points to zero gives  the 
continuous solution. 

  

Markov Decision Process  
 For a system in which the uncertainty can 
be described in a Markovian manner, the stochastic 
control  problem can be formulated in the well 
known Markov Decision Problem(MDP) . Markov 
Decision Processes capture several attractive 
features that are important in decision-making 
under uncertainty: they handle risk in sequential 
decision-making via a state transition probability 
matrix, while taking into account the possibility of 
information gathering and recourse corresponding 
to this information during the multi-stage decision 
process [5 6 7 8 9]. 

 If there are N  states in the system and n  
stages to go, a policy that delivers the 
maximal(minimal) value is called an optimal 
policy. ),( niv is the value function where  i  is the 
current state of the system and n  is the stages to 
go.  ),( niv  is usually unique but there can be more 
than one policy that can provide this value. 
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Dynamic programming is an inductive approach. 
An optimal policy for a process whose current state 
is i  and  n  stages to go, must make use of  optimal 
policies for the system with 1−n  step remaining. If 
after the initial decision  and transition, the system 
is in state j , the original optimal policy now 
constitute an optimal policy for the system with the 
initial state j and 2−n  stages remaining. There 

are iA  alternatives out of state i on the first 

transition. If alternative k  is pre-described, the 
expected gain on the initial transitions would be 

k
iq and the probability of moving to state j  from 

state i  would be k
ijp . If the system does in fact 

move to state j , from the principle of optimality, 
the total expected cost over the optimal policy over 
the last 1−n  stages would be )1,( −njv . Hence 
the total expected cost is, 

)1,(
1

−+ �
=

nivpq
N

j

k
ij

k
i . It follows that 1−n  

satisfies the recursive equation, 

)}1,({min),(
1

1
−+=

=≤≤
nivpqniv

N

j

k
ij

k
i

Ak i
         

(15) 

 

Markov Decision Process Algorithm 
for dynamic routing of aircraft (with 

no uncertainty in the transition 
matrices) 
 In this section, we will present the dynamic 
routing of aircraft under convective weather, where 
the probabilities of the storms are exactly known. In 
the next section, we will present the robust version 
of the problem, i.e., dynamic routing of aircraft 
under convective weather, where the probabilities 
of the storms are not known but bounded within a 
set described by the likelihood function.  

 We are mainly concerned with the enroute 
part of the aircraft flight where the velocity remains 
almost constant (say V ). So we can consider the 
velocity to be constant. In this way, minimizing 
expected delay is same as minimizing expected 

distance to be traveled to go to the destination from 
the origin. Our objective function is the expected 
distance to be traveled. Decision variables are the 
nodes to go at the end of each stage time till it 
reaches the destination. We define V15≈δ  as the 
distance from the storm from where the pilot knows 
for sure whether there is a storm or not. As 
previously described, the aircraft is at origin  and 
the destination is fixed. There are m  regions, 
labeled mkk ,....,1 , which are predicted to have 

storm so that it might obstruct the nominal path of 

the aircraft. We get weather update in every 15 
minutes. The transition matrix P is given. Our 
algorithm provides the routing strategy of the 
aircraft in order to obtain the minimum expected 

distance. The algorithm is described below. 

Step 1: Calculating the total number of stages 

maxn , where  1
15

15
mod

max +
−

=

T
T

n  and T  is the 

time required in the worst possible route which is 
defined as the route where nominal path is followed 
assuming no storm and the recourse is applied just  
before the storm zone to avoid the storm). 

Step 2: Discretizing the airspace with a rectangular 
grid (of spacing <<<15 min). 

Step 3: Pruning the search space which is obtained 
by the convex combination of all the shortest path 
routes corresponding to different states. 

Step 4: Determining the points that can be reached 
in the next 15 minutes. This can be approximately 
calculated if we draw an annular region with 

)(15 ε±V  as radii, with a predefined angle θ  and 
checking which grid points fall in the region. For 
the first stage, the angle can be obtained from the 
orientation of the storms. For the next stages, the 
angle θ  could be the maximum permissible turning  
angle of the aircraft. Let, ),( yx  is the coordinates 

of the origin and ),),......(,(),,( 2211 rr wzwzwz are 
r such points that can be reached at the end of first 
stage. 

Step 5: Assigning appropriate costs. Costs in our 
algorithm should be such that they enforce the 
solution will take a path through the predicted storm 
zone if there is no storm and avoid that if there is a 
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storm. Cost from going to a point from a point is a 
function of the state of storm and the Euclidean 
distance between the two points. 

Define ),,,,( jj wzyxic as cost to go from ),( yx to  

),( jj wz  if the storm state is i . 

Starting from origin ),( yx , 

Check:  

For rj ,....,2,1=  

If  )},....,(),{ ( 21 mjj kkkwz ∈  or { the straight line 

),)(1(),( jj wzyx λλ −+  and )10( ≤≤ λ  

connecting ),( yx and the point ),( jj wz cut any of 

the predicted storm zone} and { state of the 
intersected zone corresponds to a storm at that 
particular zone}  

}__{),,,,( CostHighVerywzyxic jj =  

else 

Vwzyxwzyxic jjjj 15),(),(),,,,( ≈−=  

endif 

endfor 

Proceeding this cost assignment till it reaches the 
destination point. 

Step 6: Defining the value function for our dynamic 
program, ),,,( nyxiv = Expected minimum distance 

to go if the aircraft is at the initial point ),( yx with 
the initial state i  and it nstages to go to reach the 
destination point . 

Step 7: Assigning the boundary value to the value 
functions that guarantee the desired solution. 

Case 1: We have to make sure that we always get a 
complete path (path containing the origin and the 
destination) as a solution. If  ),( qp are the 
coordinates of the destination point, the conditions 
below  guarantee that the solution will provide a 
complete path. 

For any state i , 

if  }{}{ qvpu == �  

0)0,,,( =vuiv   

else 

∞=)0,,,( vuiv  

endif 

Case 2: In the iteration process we need to put 
values of the value function for  the points which 
are less than V15  apart from the destination point. 

For any n, for any points ),( ml  such that   

Vqpml 15),(),( ≤−  

if  {  There is  no storm zone in the straight line 
)10&),)(1(),(( ≤≤−+ λλλ qpml }  

),(),(),,,( qpklnmliv −=  for any i  

elseif {  for all i corresponds to the state with no 
storm at that zone}  

),(),(),,,( qpklnmliv −=  for any i  

else 

∞=),,,( nmliv   

endif 

Step 8: Implementing the recursive equations, 

Vnyxiv
rr wzwz ),),.....((,( 11

min),,,( =  , where max0 nn ≤≤   

and  

��
�
�
�
�
�
�
�
�

�

�

��
�
�
�
�
�
�
�
�

�

�

−+

−+

−+

=

�

�

�

=

=

=

m

m

m

j
aaijrr

j
ij

j
ij

nwzjvpwzyxic

nwzjvpwzyxic

nwzjvpwzyxic

V

2

1

2

2

1
222

2

1
1111

)1,,,(),,,,(

........................................................

)1,,,(),,,,(

)1,,,(),,,,(

  

                                                                             (16) 

However,  we don't know the values  of 
)1,,,(,),........1,,,( 11 −− nwzjvnwzjv rr . To 

obtain those values, we need other recursive 
relations. Our calculation moves forward till we 
reach the boundary conditions and then we back 
track and calculate all of the value functions. From 
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this value functions and we can trace the minimum 
expected distance path. The aircraft will keep 
continue proceeding according to the solution till a 
new update is obtained. After receiving a new 
weather  update, the aircraft can run this model 
again to obtain a new updated route with the new 
input (position and vector direction of the aircraft at 
that time, the new updated weather). In this way, an 
aircraft will follow a trajectory which is updated in  
every 15 minutes. The aircraft avoids the  bad 
weather zone if there is actually a storm, but takes a 
less circuitous route if there is no storm. As a result, 
the expected distance traveled is minimized. 

 

Robust Markov Decision Processes 
 In obtaining the optimal solution of a 
Markov Decision Problem with the uncertainty in 
the transition matrices,  we propose an uncertainty 
model which results in an algorithm that  is both 
statistically accurate and numerically tractable. 
Precisely, we develop a robustness that can be 
handled at very moderate additional computational 
cost. That means the method can be readily applied 
to the routing problem with negligible extra 
computational cost.  

 If we define a new variable },,{ yxiI =  as 

the state of the system, Aa∈  denotes the points to 
go in the later  stages to reach to the destination and 

(.)nV as the vector obtained by stacking all the 

)(.,.,.,nv in all possible I in the system (there are 

YXSNS =  number of states), the equation 15 

can be written as, 

))(),((min)( 1
1

JVPaIcIV n

N

J

a
IJ

Aa
n

S

−
=∈

�
+=              (17) 

The complexity of the Bellman recursion is 

)( SAO . 

 Now consider the case when the collection 

of transition matrices Aa
aPP ∈= )(  lie in the set 

described by the equation (10). For a given action 

a , the state I , we denote by a
Ip  the next state 

distribution drawn from aP  corresponding to the 

state I , thus a
Ip  is the I th row of matrix aP . 

Hence, the robust counter part of the nominal 
Bellman Equation (16) is given by, 

))(),((minmax)( 1
1

JVPaIcIV n

N

J

a
IJ

AaP
n

S

−
=∈Ρ∈

�
+=      (18) 

 Using the standard duality arguments [17], 
we can show that the robust Bellman recursion can 
be written as, 

)(),((min

))(),((maxmin)(

1

1

−∈

−Ρ∈∈

+=

+= �
nPAa

n
J

a
IJ

PAa
n

VaIc

JVPaIcIV

a
J

φ
     (19) 

Where a
IP

φ denotes the support function of the 

convex set 
a

IP .  

 The challenge of solving the problem 
reduces to computing value of the support function 
of the set Ρ : 

   pvv T

Pp
P ∈

= max)(φ                                            (20) 

where the variable p corresponds to a particular 
row of a specific transition matrix, Ρ is the set 
describes the uncertainty on this row  given by the 
equation (10) and v is an appropriately defined 
vector with non-negative components, containing 
the elements of the value function. We refer to the 
above problem as the inner problem. 

 

Solution to the Inner Problem 

 The inner problem of the recursion: 

})(log)(,,0:max{
�

≥=≥
j

TT

p
jpjNeeppvp β

Here, we have dropped the subscript i  of the 
empirical frequency vector iN  and in the lower 

bound iβ .  

Since the above problem is convex and has 
a feasible set with non-empty interior, there is no 
Lagrange duality gap.  
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njjjts

jjv

jN
jN

j

,....,2,1,)()(,0..

)()(

)(
log)()1(min

,,

=≤+≥
−−

++− �
µγνλ

γµ
λλλβµ

γµλ

 

                                                                             (21) 

By monotonicity argument, we obtain that 
the optimal dual variable 0=γ , which reduces the 
number of variable to two: 

),(min
,

µλφ
µλ

f=   

where, 

���

���

�

∞
=>≥

−
++−

=

�

otherwise,

)(max:,0if
)(

)(
log)()1(

:),( max jvv
jv

jN
JN

f j

j

µλ
µ

λλβµ

µλ

                                                                             (22) 

 For further reference, we note that f is 
twice differentiable on its domain and that it’ s 
gradient is given by, 

��
��

�

�

		
		




�

−
−

−
−

=∇
�

�

j

j

jv

jN

jv

jN
jN

f

)(

)(
1

)(

)(
log)(

),(

µ
λ

β
µ
λ

µλ         (23) 

 From the expression of the gradient above, 
we obtain that the optimal value of λ for a fixed 

)(, µλµ , is given analytically by, 

�
−

=

j jv

jN

)(

)(
1

)(

µ

µλ                                          (24) 

which further reduces the problem to a one-
dimensional problem: 

)(min
max

µφφ
µ v≥

=                                                    (25) 

 The function φ  is convex in its domain 

)( max ∞+v . Hence, we can use the bisection to 

minimize φ . The gradient  of φ , 

µ
µλµµλ

δλ
δµµλ

δµ
δµφ

d

dff )(
)),(()),(()( +=∇   

                                                                             (26) 

 To initialize the bisection algorithm, we 
need finite upper and lower bound. A lower bound 

is clearly maxv=−µ . If  �
�

=
−

i

j

iN

jvjN

v
)(

)()(

: , then 

upper bound can be calculated  as  , 

max

max

1
max

ββ

ββ

µ −

−
−

+ −
−

=
e

vev
                                        (27) 

The bisection algorithm goes as follows, 

1. Set maxv=−µ  and +µ  as in (26). Let , ε  

be a small convergence parameter. 

2. While εµµ >− −+ , repeat 

(a) Set  2/)( +− += µµµ  . 

(b) Compute the gradient as in (25) 

(c) If 0)( >∇ µφ , set µµ =+ , 

otherwise, set µµ =−  

(d) Go to 2a 

The above algorithm converges in at most  

))(log( SO iterations. Each  iteration requires the 

computation of the function value and its gradient. 

This can be done at most )( SO . Hence, the inner 

problem under the likelihood uncertainty model can 

be solved at a worst-case cost of )log(( SSO , 

which is a very moderate increase from the nominal 

problem )( SO . 

 

Robust Markov Decision Process 
Algorithm for dynamic routing of 
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aircraft (with likelihood  uncertainty 
in the transition matrices) 
 We will present our algorithm of the robust 
dynamic routing of aircraft under convective 
weather, where the probabilities of the storms are 
not known but bounded within a set described by 
the likelihood function. As previously described in 
the nominal problem, we are mainly concerned with 
the enroute part of the aircraft flight where the 
velocity remains almost constant (say V ). So we 
are trying to minimize the  expected delay. Decision 
variables are the nodes to go at the end of each 
stage time till it reaches the destination. V15≈δ  is 
the  distance from the storm from where the pilot 
knows for sure whether there is a storm or not. 
There are m  bad zones   and we get weather update 
in every 15 minutes. The nominal transition matrix 
P  and the past data matrix N is given.. The 
algorithm is described below. 

Step1-Step7: Follow the same procedure as in the 
nominal case. 

Step 8: Instead of solving the (15) , solve the 
equation (17) by using the algorithm described  in 
the previous section in order to obtain the optimal 
nodes. 

 The aircraft will keep continue proceeding 
according to the solution till a new update is 
obtained. After receiving a new weather update and 
the corresponding past data, the aircraft can run this 
model again to obtain a new updated route with the 
new input (position and vector direction of the 
aircraft at that time, the new updated weather). The 

complexity of the algorithm is ))log(( SSAO . In 

comparison, the complexity of the non 

robust(nominal) algorithm  is )( SAO . Hence, the 

robustness incurs a very moderate additional 
computational cost in the path planning algorithm. 
As the algorithm provides a very fast solution (for 
moderate number of storms), this algorithm can be 
implemented in real time routing of aircraft under 
uncertainty. 

 

Simulation  

We have implemented both of the 
algorithms for dynamic routing of aircraft under 

uncertainty in MATLAB. One assumes a perfect 
prediction, which is called the nominal MDP 
algorithm, and the other assumes uncertainty in the 
prediction, which is called the robust MDP 
algorithm. We ran our program in a simplified 
scenario where the nominal route of an aircraft is 
obstructed by a predicted convective zone. In the 

scenario, an aircraft's current position is at T]0,0[  

and the destination is at T]0,360[ . All the units are 
in n.mi. The velocity of the aircraft is 480 
n.mi/hour. There is a prediction that a storm might 
obstruct its nominal flight path. The storm zone is a 
rectangular space with the corner points at 

TTT ]192,168[,]192,160[,]192,160[ − and 
T]192,168[ − . We are assuming that the weather 

information of the portion of the airspace that can 
be reached in 15 minutes is deterministic. The 
probability of storm propagates in a Markovian 
fashion with time. 

In the algorithm where the probabilities are 
assumed to be perfectly known, the probabilities are 
given in the following manner: if there is a storm 
currently, the probability that the storm will stay 
there in the next 15 minutes is .80(and 
consequently, there will not be any storm with a 
probability .20). Moreover, if there is no storm 
currently, the probability that there will be a storm 
in the next 15 minutes is .25 (and consequently, 
there will not be any storm with a probability .75).  

In the algorithm where the probabilities are 
assumed uncertain but bounded within a set 
described by the likelihood function, we also obtain 

)( ijNN =  by exploring previous data.   ijN  is the 

number of times the system went from state i  to 
state j . The matrix is as follows 

���
�����=

7525

2080
N . 

8011 =N  means 80 out of 100 times the storm 
stayed in the next period, given  the current 
situation; i.e., There is a  storm and  the analysis of 
the  meteorological situation  provides the 
probability of storm in the next stage as 0.80. 
Similarly, 7522 =N  means 75 out of 100 times the 
storm did not pop up in the next period, given the 
current situation; i.e, There is no storm and the 



 12 

analysis of the meteorological situation provides the 
probability of storm not occurring in the next stage 
is .75. The values of 2112 & NN  provide a similar 
meaning. 

 In the current practice the storm zone is 
avoided completely as if it is a deterministic 
obstruction. This traditional strategy incurs 51.5% 
delay (as a percentage of the nominal flight path). If 
we take maxββ = , the uncertainty set becomes a 

singleton, and hence we obtain the maximum 
likelihood solution in the robust MDP algorithm, 
which provides the same solution as obtained in the 
nominal MDP algorithm. As β  deviates from 

maxβ , the uncertainty set gets bigger. The robust 

solution performs better than the nominal solution if 
the prediction error increases. We can see in Figure 
5, that the optimal value is very sensitive in the 
range of values of β close to maxβ . In real life, it is 

almost impossible to pinpoint the probability of a 
storm. Hence, we can never obtain 8.02% delay 
corresponding to the perfect prediction; instead we 
will obtain a delay of at least 25.1 % if we do not 
use the robust algorithm. The robust solution 
provides almost 10% less delay than the nominal 
solution when uncertainty is present in the 
probabilities. However, both of the strategies 
produce much less delay than the traditional 
strategy. If there is no error in the prediction, both 
of the algorithms provide a strategy that produces 
43.3% less delay than the traditional strategy. Even 
with the presence of a significant estimation error, 
the robust strategy performs much better than the 
traditional strategy. Moreover, the running time for 
the nominal MDP algorithm was 3.83 sec, while the 
running time for the robust MDP algorithm was 
8.32 sec. The extra computation cost for robustness 
was just 4.49 seconds, which is very moderate. 
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Figure 5: A comparison in delays between robust , non-
robust and traditional solutions with varying uncertainty 

 

Conclusion 
 We provide a tool that can be used by Air 
Traffic controller or Airline Dispatcher to 
dynamically route a single aircraft under uncertain 
weather. Our solution provides a less circuitous 
route for any aircraft which is subjected to bad 
weather and hence, restricts the overloading of 
aircraft in the neighboring sectors of the predicted 
storm zones . 

The complexity of the computation depends 
on the origin-destination pair, size and location of 
the storms, level of discretization, and the 
stages of information updates. The complexity of 
the algorithm is exponential with the number of 
storms. So our algorithm can be applied in a 
scenario where the number of storms is moderate 
(around 10), which is sufficient in most of realistic 
situations.  

In practice, we know that the probabilities 
that are generated by various weather prediction 
agencies are often incorrect. In the simulation, we 
showed that the optimal delay is very sensitive to 
the prediction error. Hence, we proposed a robust 
dynamic routing strategy where the best solution 
can be obtained even when there are errors in the 
estimation of storm probabilities.  
 
Moreover, our algorithm adds very moderate 
additional computational complexity for adding 
robustness in the routing problem.  We have 
proposed a Joint Set estimation/Robust optimization 
approach where 
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• The robust routing problem is as tractable 

as original routing problem. 
• The likelihood functions allow a nice 

tradeoff between robustness and accuracy. 
• We can capture asymmetric/correlated 

errors in estimates of storm probabilities. 
 
In future work, we propose an extension of this 

model that will provide a dynamic routing strategy 
of multi-aircraft under weather uncertainty  
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