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Abstract 
A primary objective of the FAA's ATM functions is to provide fair and equitable access to the National Air Space. 
Traditionally, the FAA has interpreted fairness as prioritizing flights on a “first-come, first-served” basis. The 
allocation procedures introduced under Collaborative Decision Making (CDM), however, represent a departure from 
this paradigm: allocations are based on carriers’ original flight schedules. Yet in spite of these changes, the concept 
of fairness under CDM is largely left implicit in the procedures. Different and even conflicting concepts are 
sometimes used to describe these procedures. Moreover, the achievement of equitable allocations is often 
complicated by practical considerations.  This paper describes a general framework for equitable allocation 
procedures within the context of ATM, and illustrates its use in reducing certain systematic biases that exist under 
current procedures. We also discuss other applications of this approach, and summarize practical considerations and 
implementation issues. 

 

1. Introduction 
It has become increasingly apparent that 

demand for National Airspace System (NAS) 
resources has become very close to NAS capacity.  
Although measures are constantly being taken to 
increase capacity and, in spite of the recent demand 
decrease resulting from the events of September 11, it 
seems clear that demand and capacity will continue 
to remain very close into the foreseeable future.   

The task of monitoring traffic demand-capacity 
imbalances in the U.S. falls on the FAA’s air traffic 
flow management (TFM) specialists. Potential 
instances of excessive airborne delay are anticipated 
by TFM and met with various initiatives such as 
miles-in-trail or ground delay.  

Each demand-capacity imbalance places TFM 
in a decision-making environment in which traffic 
flow specialists must allocate scarce resources. 
Which aircraft should receive priority? What is the 
basis for equity? How can the decision maker be 
certain that resources are being used wisely? TFM 
would like to make efficient use of resources while, 
at the same time, honoring its commitment to 
equitable treatment of NAS Users.  

Currently, the most sophisticated resource 
allocation mechanisms are found in the context of 

ground delay programs (GDPs). A GDP is a traffic 
flow management initiative for addressing airport 
arrival capacity shortfalls: delays are applied to 
flights at their origin airports when they are bound for 
a common destination airport with reduced capacity 
or excessive demand.  For allocation purposes, the 
time horizon of reduced capacity is divided into 
contiguous time intervals known as arrival slots.  

The Collaborative Decision Making (CDM) 
program has established a highly successful paradigm 
for allocation of airport arrival slots. There are many 
subtleties associated with arrival slot allocation under 
CDM, but the essence of the allocation principle is 
“first-scheduled, first-served”, meaning that the 
earlier arrival slots are generally awarded to the 
flights that are scheduled to arrive earlier. See [1], [2] 
for details on rationing.  

The CDM experience has shown that not only is 
equitable treatment of carriers advisable, but it may 
be a necessary condition for efficient use of resources 
(see [1], [3]). Prior to CDM, effective GDP initiatives 
were based on dated flight data that did not reflect the 
airline’s intentions upon the day of operation. This 
hindered accurate flow control and led to 
inefficiencies.  It was found that the airlines felt that 
they were not being treated equitably and that the 
information they provided could be used to provide 
benefits to their competitors.  As a result, they were 
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reluctant to provide up-to-date information.  By 
instituting resource allocation methods that were 
based on an agreed upon standard (first-scheduled, 
first-served) and by allowing the airlines to derive 
benefits for the provision of cancellation information 
(the compression algorithm), the airlines were 
induced to provide up-to-date intent information 
through the CDM-Net.  In addition, through regular 
meetings of the CDM working groups, a cooperative 
culture developed and joint problem solving was used 
to address open issues.    

1.1 Exemptions within GDPs 
Numerous program parameters must be chosen 

by TFM before a GDP can be implemented. Chief 
among these are the temporal scope of the program 
(start and end times), and the geographical scope. 
The temporal scope is usually determined by the start 
and end times of the degraded airport conditions.  

Having set the temporal scope of the program, 
the amount of total delay that needs to be applied in 
order to smooth demand surges to capacity levels is 
easily computed. The crucial observation is that the 
total necessary delay that must be absorbed is 
virtually constant, and independent of which carriers 
receive the delay.  

From an equity standpoint, it would be most 
desirable to spread this total necessary delay out over 
as many flights, or types of flights, as possible. But 
important, valid considerations motivate both 
limiting the scope of programs and also exempting 
certain flights within the scope from FAA-assigned 
delay.   

There are two major categories of exemptions.  
First, flights that are already in the air when the 
program is filed cannot be assigned ground delay 
and, by necessity, are exempt.  A second type of 
exemption is much more at the discretion of the TFM 
specialist designing and implementing the GDP: 
geographical exemption (see [4]). Clearly, FAA-
assigned ground delay at the origin airport must be 
served before a flight departs, which in the case of 
coast-to-coast flights, can be 5 or 6 hours in advance 
of arrival. TFM is not always confident enough in a 
weather forecast to assign irrevocable ground delay 
that many hours in advance. For if the weather clears 
earlier than expected or, worse yet, does not 
materialize at all, then many of the flights will have 
endured (in hindsight) unnecessary ground delay.   

One way that TFM mitigates the effects of 
capacity uncertainty is to limit the geographical scope 
of the program. Generally, flights originating at 

distant airports are exempted from FAA-assigned 
ground delay in a GDP.  The price paid for 
exempting large numbers of flights is that the total 
necessary delay in a GDP is distributed over a 
smaller collection of flights, thus driving up the 
maximum delay and average delay per (non-
exempted) flight. Thus, efficiency and equity are at 
odds with each other.  

We take as a given in this paper the need to 
restrict the geographical scope of a GDP and that 
TFM exercises this option at their discretion on a 
program-by-program basis (see [5], [6], [7] for a 
treatment of stochastic planning issues in GDPs). 
Instead, our interest lies in the ramifications of the 
exemptions. If programs tend to be implemented with 
tight geographical scope, then carriers with 
predominantly shorter stage lengths may be receiving 
an undue amount of delay.  Section 3 addresses 
possible systematic biases against such carriers. This 
assumes, of course, that an ideal allocation can be 
agreed upon as the standard of fairness, which is 
addressed in Section 2.  Section 2 also proposes a 
general approach to minimizing the deviation 
between an actual allocation and an ideal standard.  
In Section 4, we apply the method given in Section 2,  
to offset the inequities imposed by exemptions. 
Lastly, in Sections 5 and 6, we discuss 
implementation issues and possible extensions of the 
approach to more general settings. 

2. A General Approach to Equitable 
Resource Allocation 

In approaching the problem of how to equitably 
allocate a resource, two basic problems usually arise.  
The first involves determining a standard or policy 
that constitutes an ideal fair allocation.  This can be 
challenging, as there are usually multiple possible 
alternatives and the ultimate criterion for a good 
standard is that it be accepted by the parties involved.  
Typically, equity is not the sole criterion by which an 
allocation is judged.  The second problem is to 
construct the resource allocation in such a way that 
takes into account the ideal allocation but also 
considers other objectives and constraints.  We 
address each of these problems in the following 
subsections. 

2.1 Defining an Ideal Allocation 
The general acceptance of the CDM GDP 

procedures leads one to believe that the CDM 
resource allocation algorithms must be based on 
sound principles.  To understand the fundamental 
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nature of CDM resource allocation we consider the 
“unconstrained” version of the CDM ration-by-
schedule (RBS) algorithm, which is based on the 
first-scheduled, first served principle.  Here by 
unconstrained, we mean that no flights are exempt 
from FAA-assigned ground delay.    Recent research 
(see [2],[8]) has shown unconstrained RBS closely 
related to well-established equitable allocation 
concepts.  Specifically, it is a strict priority method, 
where a flight’s priority is based on its OAG time, i.e. 
a flight with an earlier OAG time has priority over a 
flight with a later OAG time.  Furthermore, it has 
other important properties.  The result of RBS is to 
assign to each flight, f, a controlled time of arrival, 
CTA(f).  This translates into assigning a delay, d(f), to 
flight, f, which is given by d(f) = CTA(f) – OAG(f), 
where OAG(f) is the scheduled arrival time for f.   All 
time values are rounded to the nearest minute under 
RBS, hence, each delay value d(f) is integer. If we let 
D equal the maximum delay assigned to any flight 
and let ai = |{f : d(f) = i}| for i = 0 ,1,2 …, D,  then 
the important RBS properties can be defined by, 

Property 1:  RBS minimizes total delay = Σf d(f). 

Property 2:  RBS lexicographically minimizes 
(aD,…, a1,  a0), i.e. aD is minimized;  subject to aD 
being fixed at its min value, aD-1 is minimized; subject 
to (aD, aD-1) being fixed at its lexicographic min 
value, aD-2 is minimized, etc. 

Property 3:  For any flight f, the only way to 
decrease a delay value, d(f), set by RBS is to increase 
the delay value of another flight g to a value greater 
than d(f).  

Property 3, which follows directly from 
Property 2, expresses a very fundamental notion of 
equity that has been applied in a number of contexts 
(see [9]).   In some sense, it is remarkable that the 
procedures developed on very practical war-gaming 
and consensus building exercises have very well-
studied properties.  On the other hand, this result may 
not be surprising in that these properties represent the 
basis for consensus being reached.   

We should note however, that the equity notions 
described in Properties 2 and 3 effectively treat 
flights as independent entities.  However, the 
majority of flights are associated with particular 
airlines.  The implicit definition of an airline priority 
is that the airline’s priority is the “sum” of the 
priorities of all of its flights.  One might ask if 
alternate solutions should be considered that are more 
reflective of an “airline-centric” point of view.   

One limitation of the RBS-based approach to 
equity is there is an implicit assumption that all 

flights are activated. In fact, for many GDPs where 
airport capacity is degraded for several hours, airlines 
typically cancel large numbers of flights.  When 
delays for a flight become very large, e.g. greater 
than two hours, it may be impractical or 
uneconomical to operate the flight.  An airline with 
slots toward the end of a long, severe GDP would 
receive very few “usable” slots.   

A possible alternative to RBS is proportional 
allocation. In general (see [8], [9]), a group of 
claimants each have a claim of a certain size.  The 
resource in question is divided up in proportion to the 
size of each claim.  Implicit in this approach is that 
the size of the resource to be allocated is smaller than 
the sum of the sizes of the claims (otherwise it is 
possible to give all claimants an allocation exactly 
equal to their respective claims).  The most obvious 
application in the GDP context would be one where 
the claimants are airlines and the size of each claim is 
the number of flights scheduled during the GDP.  
There are some problems associated with the direct 
application of this idea.  In particular, some slots 
might not be usable by an airline even though it has 
an implicit claim to these slots. For instance, an 
airline could not use a slot in the first hour of a GDP 
if its earliest flight cannot arrive until the second hour 
of the GDP. We have developed procedures that 
address the problem just described, and can be 
viewed as a compromise between RBS and a “pure” 
proportional approach (see [8]).  These procedures 
will be discussed and analyzed in future papers. 

In the primary analyses described in the rest of 
this paper we will use “unconstrained” RBS as an 
ideal allocation.  We will also report on some 
experiments related to the use of a proportional 
allocation. 

2.2 Minimizing the Deviation between the 
Actual and Ideal Allocations 

As mentioned above, it is rare in a practical 
setting that the ideal allocation is feasible and/or even 
desirable.  Taking the GDP example, the actual 
arrival slot allocation can be far different from the 
“ideal” RBS allocation because of the sometimes-
extensive set of exempt flights.  There are other 
incidents that lead to deviations from the ideal.  We 
note two significant cases below. 

A small number of flights typically must be 
inserted into the arrival stream after the GDP has 
been planned.  These so-called popup flights, by 
occupying space in the arrival sequence and possibly 
causing unanticipated airborne delays to other flights, 
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are implicitly assigned arrival slots by a process 
totally independent from the original RBS allocation. 

Occasionally an airline will be assigned a slot 
early in the GDP that it cannot use because its flights 
have earliest arrival times later than the slot.  These 
incidents typically occur due to flight cancellations or 
when flights are delayed for reasons not having to do 
with the GDP allocation process.   Such slots are 
currently reassigned by the compression algorithm. 

The primary purpose of this paper is to propose 
a method for mitigating inequities that arise due to 
exemptions.  We also discuss, both here and in later 
sections, how the approach represents a general 
approach to addressing problems of equitable 
allocation not only for GDPs but also for other air 
traffic flow management problems. 

The roots of the general approach we employ lie 
in problems arising in balanced just-in-time (JIT) 
scheduling (see for example [10], [11]).  In this 
application a factory must produce multiple products.  
Associated with each product is an ideal rate of 
production.  Of course, there are typically many 
constraints regarding the manner in which production 
can occur within a factory.  The models developed 
for this class of problems output production 
schedules that minimize the “deviation” between the 
actual production rates for each product and the ideal 
rates.  A key issue in any such model is how 
deviation is defined.  Absolute value and squared 
deviation measures are often used.  For one general 
class of models, deviation is measured as a function 
of the time between when products are produced and 
the ideal production time.  Another class measures 
deviation as a function of the number of products 
produced by a certain time and the ideal such 
number. In the remainder of this paper, we use the 
fist class of measures. 

For the GDP problem, we define: 

n = the number of slots to be allocated; 

m = the number of airlines; 

ba = the number of flights associated with airline a. 

Each slot j has a slot time sj with s1 < s2 < … < 
sn.  Each airline must be allocated ba slots, denoted by 
j’(a,1), j’(a,2), …,j’(a,ba).  This ordering is consistent 
with the slot time ordering so that sj’(a,1) < sj’(a,2) < … 
< sj’(a,ba).  We call j’(a,k) the kth  slot allocated to 
airline a.  When developing an analogy with the 
balanced JIT production scheduling problem, airlines 
correspond to products.  Rather than defining an ideal 
“rate” of slots each airline should receive, we define 
an ideal allocation over time based on RBS.  That is, 

an “unconstrained” version of RBS is executed, 
which produces an allocation of slots to flights.  
None of the issues given earlier in the section (i.e. 
popups, cancellations, and exemptions) are taken into 
account when this version of RBS is executed.  The 
union of the slots allocated to the flights of each 
airline under RBS is the ideal allocation for that 
airline.  The result of this step can be characterized 
by a 0/1 vector, p, defined by: 

pjak = 1 if  j is the ideal value for j’(a,k);  0 otherwise. 

We wish to define an optimization model that 
produces an allocation with minimum deviation from 
this ideal allocation.  Depending on the precise 
circumstances a variety of constraints could be 
imposed on that allocation.  Specifically, we define: 

e(a,k) = the earliest slot that can be designated as the 
kth slot for airline a.   

l(a,k) = the latest slot that can be designated as the kth 
slot for airline a.   

FA(a) = the set of slots whose allocation is fixed a-
priori to airline a. 

The model variables are: 

xjak = 1 if j is the kth slot allocated to airline a;  0 
otherwise. 

We can now formulate an assignment model 
that assigns slots to airlines.  On the lefthand/supply 
side of the model are nodes that correspond to the 
available slots.  On the righthand/demand side of the 
model are nodes representing (k,a) pairs (kth slot for 
airline a).  The model minimizes the squared 
deviation between the slots allocated and their ideal 
locations subject to constraints on fixed slots and 
earliest and latest slot time. 

Min Σjak  (j-pjak)2 xjak  

s.t. 

Σak xjak   ≤   1   for all slots j where 

j ∉ FA(a) for some a,          (1) 

Σk xjak   =   1 for all a and j ∈ FA(a),       (2) 

Σj: e(a,k) ≤ j ≤l(a,j)    xjak  =   1 for all a and k,       (3)     

xjak ∈ {0,1} for all a, k and j. 

Constraints (1) and (2) insure that each slot is 
assigned to at most one (a,k) pair and also that each 
fixed slot is allocated to the appropriate airline.  
Constraint (3) insures that each (a,k) pair is assigned 
a slot between its earliest and latest available times.  
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Figure 1:  Historical Allocation, Logan Airport Boston 

 
We have constructed alternative models and 

algorithms as well [8]. In particular, a more complex 
flow model can be used in certain cases to minimize 
alternative deviation measures.  Also, in some cases 
it is possible to solve the problem directly using a 
simple “greedy” algorithm.  These will be described 
in another paper. 

This is a relatively simple model but it has very 
general applicability.  In particular, a variety of 
applications are possible depending on how e(a,k), 
l(a,k) and FA(a) are defined.   

3. GDP Inequities Arising from 
Exemptions 
 Currently, exempted flights are assigned 
slots first, followed by the allocation of the remaining 
slots to the non-exempted flights. The manner in 
which flight exemptions are incorporated, however, 
can have a significant impact on the distribution of 
delays among airlines. To illustrate this, we analyzed 
the impact of flight exemptions using historical data. 

For eight GDPs at Boston’s Logan Airport 
during the first 4 months of 2001, we determined the 
delays for each airline with and without the 
exemptions that occurred during that day. The results 
are shown in Figure 1, which depicts for a selected 
number of airlines, the difference between an airline's 
average delay under the unconstrained RBS 
allocation and under RBS with exemptions included 
(a negative number on the vertical axis means the 

airline would have received less delay if exemptions 
were not made). Each demarcation point on the 
horizontal axis corresponds to a date on which a GDP 
was executed at Logan.   

Clearly, flight exemptions have a significant 
impact on the distribution of delays. Moreover, we 
found that exemptions may introduce a systematic 
bias in favor of or against certain airlines. For 
example, for one major carrier (USA) the use of 
flight exemptions increased its delay by an average of 
11.7 minutes per flight (over its delay under the 
unconstrained RBS allocation), while for a smaller 
carrier (UCA) the increase in delay was 18.2 minutes 
per flight. 

4. Using the Model to Mitigate 
Exemption Bias 

From an airline-centric point of view, the 
current procedures to deal with flight exemptions can 
introduce significant inequities. Here, we analyze the 
extent to which the optimization model defined in 
Section 2 can mitigate these biases. In addition, we 
consider how the optimization model impacts the 
distribution of delays within an airline, that is, the 
individual flight delays for each airline. 

We first must define how to apply the 
optimization model to this setting. 

 



6 

-40

-30

-20

-10

0

10

20

30

40

1/6/2001 1/20/2001 2/3/2001 2/17/2001 3/3/2001 3/17/2001 3/31/2001 4/14/2001

TWA CJC COA UAL UCA DAL USA AAL

 

Figure 2:  Optimization Model Impact, Logan Airport Boston  
 

In addition to basic information on slots and 
flights, three key data sets must be defined: e(a,k), 
l(a,k) and FA(a). The earliest arrival time for the kth 
flight of airline a, e(a,k),  is set equal to the kth 
earliest OAG arrival time amongst all of airline a’s 
flights.    The latest arrival time for the kth flight of 
airline a, l(a,k),  is not defined, i.e. it is assumed to be 
infinite.  Finally, the key dataset for this application 
is the set of fixed slots for airline a, FA(a).  This is 
set equal to the set of slots occupied by airline a’s 
exempt flights.  This insures that all the slots 
occupied by exempt flights will be assigned to the 
corresponding airline.  However, by including these 
slots within the model, theses slots “count against” 
the allocation received by the respective airline.  By 
doing this, if a large number of an airline’s flights 
are exempted, then that airline will receive a 
correspondingly higher allocation of delay to its 
flights that are not exempt.     

We applied the model to all of the GDPs from 
Figure 1.  To evaluate the effectiveness of the model, 
we compared the delay obtained under the 
unconstrained RBS allocation and the delay that 
would have been obtained using the optimization 
model. The results for Boston’s Logan airport are 
shown in Figure 2. Figure 2 depicts, for a selected 
number of airlines, the difference between an airline's 
average delay under RBS without exemptions and 
under the optimization model (a negative number 
again means the airline would have been allocated 
less delay if exemptions were not taken into account).  

It is instructive to compare Figure 2 with Figure 
1, which shows the difference in delay between the 
unconstrained RBS allocation and RBS with 
exemptions (the current procedure). Clearly, the 
optimization model has a significant impact and is 
able to reduce the biases substantially. For example, 
for the major carrier mentioned earlier (USA), the use 
of the optimization model reduced the average (per 
flight) difference with the unconstrained RBS 
allocation from –11.7 minutes to –3.4 minutes, while 
for the smaller carrier (UCA) the exemption bias was 
reduced from -18.2 to -5.4 minutes per flight.  These 
reductions are very significant and would have a 
major impact on the performance of the airlines 
involved. 

It is also important to consider potential “side 
effects” of the model, including the impact on the 
distribution of delays among flights.  The 
optimization model's impact on the distribution of 
delays is shown in Figure 3. Figure 3 depicts, for a 
selected number of airlines (which constitute over 
95% of all flights during the GDPs), both the 
distribution of delays that was obtained under current 
RBS procedures and the distribution of delays that 
would have been obtained by the optimization-based 
approach.  In these graphs the horizontal axis gives 
delay values in minutes and the vertical axis the 
number of flights having the corresponding value.   
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Figure 3:  Delay Distribution Impact, Logan Airport Boston  

 

In each of the graphs, the solid lines represent the 
distribution of delays under current RBS procedures, 
whereas the dashed lines represent the distribution of 
delays that would have been obtained using the 
optimization-based approach.  To determine these 
distributions, we used the same GDPs at Boston's 
Logan airport as in the previous experiments. The 
results in Figure 3 indicate that, on the aggregate, the 
use of the optimization model appears to have a 
relatively minor influence on the distribution of 
delays. The impact is most severe for one medium-
sized carrier, which would see a sizeable increase in 
large delays (= 180 minutes). Intuitively, the reason 
for this is that this carrier has a high percentage of 
flight exemptions (approximately 60% of its flights 
are exempt), while it has a relatively small number of 
flights in a GDP (approximately 18 flights per GDP). 
As such, there will be little opportunity to shift the 
delay “benefits” absorbed by the exempt flights to its 
non-exempt flights.  We note that if it was desirable 
to put a limit on maximum delay allocated then this 
could easily be incorporated into the model. 

5. Other Applications 
We have focused on a particular type of equity 

compensation mechanism, which might be used to 

offset the deviation of actual allocation from a 
baseline ideal. As mentioned earlier, there are other 
forms of equity disturbances in a GDP. 

The first disturbance, which is currently 
addressed very well through the compression 
algorithm, is the occurrence of flight cancellations.   
In keeping with the equity principles espoused 
earlier, we would say that when an airline cancels 
flight generating a slot it cannot use, it should be 
compensated.  Of course, this is exactly what the 
compression algorithm, which was an original 
fundamental component of CDM, does.  In fact, the 
model given in Section 2 can be adapted to produce 
results essentially equivalent to compression (see [2], 
[8]).  While using the model in this way does not 
produce any new functionality, it is important and 
noteworthy that the algorithm of Section 2 provides a 
unified approach to both RBS and compression.     

A second disturbance is the popup flight 
described earlier.  Current procedures allocate a delay 
to a popup flight that is approximately equal to the 
delay received by comparable flights, meaning flights 
that were scheduled to arrive at about the same time.  
No explicit carrier-level controls or checks are 
considered.  Thus, certain carriers could 
systematically “generate” many more popups than 
other carriers and, as a consequence, gain an 
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advantage.  In fact, it is easy to see that popups are 
essentially equivalent to exemptions.  That is, they 
are slots arbitrarily allocated to specific flights.  
Thus, the model we have just described could easily 
be applied to popups, thereby mitigating any 
potential biases associated with the degree to which 
an airline generated popups.    

Finally, we mention a third disturbance: the 
recently implemented arrival slot change procedure, 
which states that when a flight cannot meet its 
controlled time of departure (hence will miss its 
designated arrival slot), it must dynamically obtain a 
new arrival slot from TFM. In this case, dynamic 
reassignment of an arrival slot might be done 
according to slot availability and deviation from the 
ideal slot allocation.  

It seems clear that the approach we have 
described provides a general setting to mitigate biases 
from a wide range of disturbances.  The fact that it is 
so general is extremely appealing. This implies that 
by including it in the CDM decision support tools a 
range of situations can be addressed.  This generality 
also would seem to hold promise for addressing other 
contexts where equitable allocation is of interest, for 
example in the en route airspace.  Potentially, this 
could be done by extending the analogy with 
balanced JIT problems to more complex versions of 
the problem (see [12] for a description of variations 
of balanced JIT problems).  Moreover, we note that it 
is relatively straightforward to apply the model with 
alternative fairness standards (e.g. the proportional 
allocation discussed in Section 2; see also [8] for 
computational results). 

6. Practical Considerations and 
Implementation Issues 

Before the concepts presented in this paper can 
be implemented, several implementation issues must 
be resolved, which we list here.  

(1) Part of the appeal of an equity compensation 
mechanism is that it would (partially) alleviate TFM 
from making equity-based decisions, thus allowing 
them to focus more on their forte, demand-capacity 
balancing. But extreme behavior, such as choosing an 
unusually small GDP geographical scope, may lead 
to inequities so large that they cannot be effectively 
restored. The limits of an equity restoration 
mechanism would have to be well understood. On a 
more general level, the choice of geographical scope 
poses an interesting yet complex trade-off: a large 
scope (i.e. fewer exemptions) may lead to an 
inequitable distribution of (in hindsight) unnecessary 

delay, if the predicted reduction in capacity does not 
materialize, while a small scope may lead to an 
inequitable distribution of actual delays if the 
capacity reductions do materialize. As such, 
integrating the approach described here with GDP 
models that incorporate uncertainty ([4], [6]) presents 
a topic for further research.  

(2) We have discussed equitable allocation 
largely in the context of a static planning scenario. 
The reality of GDP planning, however, is that 
programs are frequently revised and/or extended due 
to weather uncertainty and its impact on arrival 
capacities. As time progresses, flights are being 
launched toward the GDP airport and the ability to 
control them (via ground delay) is lost. These 
dynamics naturally dictate that the ability of an 
allocation scheme to restore equity is degraded over 
time as well. It should be noted, however, that the 
current approaches do not take into account equity 
restoration during GDP revisions. Both the TFM 
specialists as well as the decision support tools must 
be able to handle the dynamics of GDP planning.  

(3) Under current GDP allocation procedures, 
each carrier reserves the right to reallocate among its 
flights the slots that have been allocated to it. This is 
done in a cancellation and substitution process. In 
particular, they reserve the right to trade arrival slots 
(times) between long-haul and short-haul flights. So, 
one must fully think through the interactions between 
the air carrier cancellation-substitution process and 
any equity scheme that is based in any way on flight 
stage length. Since air carrier substitution practices 
are highly dynamic and carrier-specific, this might 
require human-in-the-loop exercises with the air 
carriers.  

(4) Allocation procedures are constantly 
evolving, as the aviation community addresses new 
equity concerns. How robust are the algorithms and 
procedures proposed here with respect to these types 
of changes?   (We note that an appeal of the approach 
presented is that it appears to be much more general 
and robust than current approaches).  

(5) For one airport, our analyses have shown 
that current procedures have a systematic bias against 
ce certain carriers. But due to operational practices, a 
carrier may receive an advantage at one airport and a 
disadvantage at another. Do these factors average out 
over time, when GDPs at all airports are taken into 
account? Community acceptance of an equity 
compensation mechanism might hinge on the results 
of a more extensive analysis.  

(6) A basis for ideal allocation has been 
established, which relies heavily on associating 
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each flight with an air carrier. But general aviation 
flights are usually independently owned and 
operated. How will arrival slots be allocated to 
general aviation flights? Is it reasonable to treat the 
set of general aviation flights as a single entity. 
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